Signal Filtering Enabled by Spike Voltage-Dependent Plasticity in Metalloporphyrin-Based Memristors

© 2021 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 43 vom: 30. Okt., Seite e2104370
1. Verfasser: Wang, Zhiyong (VerfasserIn)
Weitere Verfasser: Wang, Laiyuan, Wu, Yiming, Bian, Linyi, Nagai, Masaru, Jv, Ruolin, Xie, Linghai, Ling, Haifeng, Li, Qi, Bian, Hongyu, Yi, Mingdong, Shi, Naien, Liu, Xiaogang, Huang, Wei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article metalloporphyrin/oxide memristor neuromorphic computing signal filtering spike voltage-dependent plasticity
Beschreibung
Zusammenfassung:© 2021 Wiley-VCH GmbH.
Neural systems can selectively filter and memorize spatiotemporal information, thus enabling high-efficient information processing. Emulating such an exquisite biological process in electronic devices is of fundamental importance for developing neuromorphic architectures with efficient in situ edge/parallel computing, and probabilistic inference. Here a novel multifunctional memristor is proposed and demonstrated based on metalloporphyrin/oxide hybrid heterojunction, in which the metalloporphyrin layer allows for dual electronic/ionic transport. Benefiting from the coordination-assisted ionic diffusion, the device exhibits smooth, gradual conductive transitions. It is shown that the memristive characteristics of this hybrid system can be modulated by altering the metal center for desired metal-oxygen bonding energy and oxygen ions migration dynamics. The spike voltage-dependent plasticity stemming from the local/extended movement of oxygen ions under low/high voltage is identified, which permits potentiation and depression under unipolar different positive voltages. As a proof-of-concept demonstration, memristive arrays are further built to emulate the signal filtering function of the biological visual system. This work demonstrates the ionic intelligence feature of metalloporphyrin and paves the way for implementing efficient neural-signal analysis in neuromorphic hardware
Beschreibung:Date Revised 26.10.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202104370