Disentangling Ferroelectric Wall Dynamics and Identification of Pinning Mechanisms via Deep Learning

© 2021 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 43 vom: 30. Okt., Seite e2103680
1. Verfasser: Liu, Yongtao (VerfasserIn)
Weitere Verfasser: Proksch, Roger, Wong, Chun Yin, Ziatdinov, Maxim, Kalinin, Sergei V
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article deep learning domain wall dynamics ferroelectrics pinning mechanism
LEADER 01000naa a22002652 4500
001 NLM33052769X
003 DE-627
005 20231225211458.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202103680  |2 doi 
028 5 2 |a pubmed24n1101.xml 
035 |a (DE-627)NLM33052769X 
035 |a (NLM)34510569 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Yongtao  |e verfasserin  |4 aut 
245 1 0 |a Disentangling Ferroelectric Wall Dynamics and Identification of Pinning Mechanisms via Deep Learning 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 26.10.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Wiley-VCH GmbH. 
520 |a Field-induced domain-wall dynamics in ferroelectric materials underpins multiple applications ranging from actuators to information technology devices and necessitates a quantitative description of the associated mechanisms including giant electromechanical couplings, controlled nonlinearities, or low coercive voltages. While the advances in dynamic piezoresponse force microscopy measurements over the last two decades have rendered visualization of polarization dynamics relatively straightforward, the associated insights into the local mechanisms have been elusive. This work explores the domain dynamics in model polycrystalline materials using a workflow combining deep-learning-based segmentation of the domain structures with nonlinear dimensionality reduction using multilayer rotationally invariant autoencoders (rVAE). The former allows unambiguous identification and classification of the ferroelectric and ferroelastic domain walls. The rVAE discovers the latent representations of the domain wall geometries and their dynamics, thus providing insight into the intrinsic mechanisms of polarization switching, that can further be compared to simple physical models. The rVAE disentangles the factors affecting the pinning efficiency of ferroelectric walls, offering insights into the correlation of ferroelastic wall distribution and ferroelectric wall pinning 
650 4 |a Journal Article 
650 4 |a deep learning 
650 4 |a domain wall dynamics 
650 4 |a ferroelectrics 
650 4 |a pinning mechanism 
700 1 |a Proksch, Roger  |e verfasserin  |4 aut 
700 1 |a Wong, Chun Yin  |e verfasserin  |4 aut 
700 1 |a Ziatdinov, Maxim  |e verfasserin  |4 aut 
700 1 |a Kalinin, Sergei V  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 33(2021), 43 vom: 30. Okt., Seite e2103680  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:33  |g year:2021  |g number:43  |g day:30  |g month:10  |g pages:e2103680 
856 4 0 |u http://dx.doi.org/10.1002/adma.202103680  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2021  |e 43  |b 30  |c 10  |h e2103680