Machine Learning : An Advanced Platform for Materials Development and State Prediction in Lithium-Ion Batteries

© 2021 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 25 vom: 25. Juni, Seite e2101474
1. Verfasser: Lv, Chade (VerfasserIn)
Weitere Verfasser: Zhou, Xin, Zhong, Lixiang, Yan, Chunshuang, Srinivasan, Madhavi, Seh, Zhi Wei, Liu, Chuntai, Pan, Hongge, Li, Shuzhou, Wen, Yonggang, Yan, Qingyu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review lithium-ion batteries machine learning materials discovery and prediction state prediction
LEADER 01000naa a22002652 4500
001 NLM33033056X
003 DE-627
005 20231225211046.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202101474  |2 doi 
028 5 2 |a pubmed24n1101.xml 
035 |a (DE-627)NLM33033056X 
035 |a (NLM)34490683 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lv, Chade  |e verfasserin  |4 aut 
245 1 0 |a Machine Learning  |b An Advanced Platform for Materials Development and State Prediction in Lithium-Ion Batteries 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 23.06.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Wiley-VCH GmbH. 
520 |a Lithium-ion batteries (LIBs) are vital energy-storage devices in modern society. However, the performance and cost are still not satisfactory in terms of energy density, power density, cycle life, safety, etc. To further improve the performance of batteries, traditional "trial-and-error" processes require a vast number of tedious experiments. Computational chemistry and artificial intelligence (AI) can significantly accelerate the research and development of novel battery systems. Herein, a heterogeneous category of AI technology for predicting and discovering battery materials and estimating the state of the battery system is reviewed. Successful examples, the challenges of deploying AI in real-world scenarios, and an integrated framework are analyzed and outlined. The state-of-the-art research about the applications of ML in the property prediction and battery discovery, including electrolyte and electrode materials, are further summarized. Meanwhile, the prediction of battery states is also provided. Finally, various existing challenges and the framework to tackle the challenges on the further development of machine learning for rechargeable LIBs are proposed 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a lithium-ion batteries 
650 4 |a machine learning 
650 4 |a materials discovery and prediction 
650 4 |a state prediction 
700 1 |a Zhou, Xin  |e verfasserin  |4 aut 
700 1 |a Zhong, Lixiang  |e verfasserin  |4 aut 
700 1 |a Yan, Chunshuang  |e verfasserin  |4 aut 
700 1 |a Srinivasan, Madhavi  |e verfasserin  |4 aut 
700 1 |a Seh, Zhi Wei  |e verfasserin  |4 aut 
700 1 |a Liu, Chuntai  |e verfasserin  |4 aut 
700 1 |a Pan, Hongge  |e verfasserin  |4 aut 
700 1 |a Li, Shuzhou  |e verfasserin  |4 aut 
700 1 |a Wen, Yonggang  |e verfasserin  |4 aut 
700 1 |a Yan, Qingyu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 25 vom: 25. Juni, Seite e2101474  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:34  |g year:2022  |g number:25  |g day:25  |g month:06  |g pages:e2101474 
856 4 0 |u http://dx.doi.org/10.1002/adma.202101474  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 25  |b 25  |c 06  |h e2101474