HOMEOBOX PROTEIN 24 mediates the conversion of indole-3-butyric acid to indole-3-acetic acid to promote root hair elongation
© 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.
Veröffentlicht in: | The New phytologist. - 1979. - 232(2021), 5 vom: 04. Dez., Seite 2057-2070 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | The New phytologist |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Arabidopsis thaliana HOMEOBOX PROTEIN 24 auxin indole-3-acetic acid (IAA) indole-3-butyric acid (IBA) root hair transcription factor Arabidopsis Proteins mehr... |
Zusammenfassung: | © 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation. Indole-3-acetic acid (IAA) is a predominant form of active auxin in plants. In addition to de novo biosynthesis and release from its conjugate forms, IAA can be converted from its precursor indole-3-butyric acid (IBA). The IBA-derived IAA may help drive root hair elongation in Arabidopsis thaliana seedlings, but how the IBA-to-IAA conversion is regulated and affects IAA function requires further investigation. In this study, HOMEOBOX PROTEIN 24 (HB24), a transcription factor in the zinc finger-homeodomain family (ZF-HD family) of proteins, was identified. With loss of HB24 function, defective growth occurred in root hairs. INDOLE-3-BUTYRIC ACID RESPONSE 1 (IBR1), which encodes an enzyme involved in the IBA-to-IAA conversion, was identified as a direct target of HB24 for the control of root hair elongation. The exogenous IAA or auxin analogue 1-naphthalene acetic acid (NAA) both rescued the root hair growth phenotype of hb24 mutants, but IBA did not, suggesting a role for HB24 in the IBA-to-IAA conversion. Therefore, HB24 participates in root hair elongation by upregulating the expression of IBR1 and subsequently promoting the IBA-to-IAA conversion. Moreover, IAA also elevated the expression of HB24, suggesting a feedback loop is involved in IBA-to-IAA conversion-mediated root hair elongation |
---|---|
Beschreibung: | Date Completed 06.01.2022 Date Revised 31.05.2022 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1469-8137 |
DOI: | 10.1111/nph.17719 |