LEADER 01000naa a22002652 4500
001 NLM330229311
003 DE-627
005 20231225210833.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202104265  |2 doi 
028 5 2 |a pubmed24n1100.xml 
035 |a (DE-627)NLM330229311 
035 |a (NLM)34480500 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Rajabpour, Siavash  |e verfasserin  |4 aut 
245 1 0 |a Tunable 2D Group-III Metal Alloys 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.11.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Wiley-VCH GmbH. 
520 |a Chemically stable quantum-confined 2D metals are of interest in next-generation nanoscale quantum devices. Bottom-up design and synthesis of such metals could enable the creation of materials with tailored, on-demand, electronic and optical properties for applications that utilize tunable plasmonic coupling, optical nonlinearity, epsilon-near-zero behavior, or wavelength-specific light trapping. In this work, it is demonstrated that the electronic, superconducting, and optical properties of air-stable 2D metals can be controllably tuned by the formation of alloys. Environmentally robust large-area 2D-Inx Ga1- x alloys are synthesized byConfinement Heteroepitaxy (CHet). Near-complete solid solubility is achieved with no evidence of phase segregation, and the composition is tunable over the full range of x by changing the relative elemental composition of the precursor. The optical and electronic properties directly correlate with alloy composition, wherein the dielectric function, band structure, superconductivity, and charge transfer from the metal to graphene are all controlled by the indium/gallium ratio in the 2D metal layer 
650 4 |a Journal Article 
650 4 |a 2D materials 
650 4 |a optical properties 
650 4 |a superconductivity 
650 4 |a tunable properties 
700 1 |a Vera, Alexander  |e verfasserin  |4 aut 
700 1 |a He, Wen  |e verfasserin  |4 aut 
700 1 |a Katz, Benjamin N  |e verfasserin  |4 aut 
700 1 |a Koch, Roland J  |e verfasserin  |4 aut 
700 1 |a Lassaunière, Margaux  |e verfasserin  |4 aut 
700 1 |a Chen, Xuegang  |e verfasserin  |4 aut 
700 1 |a Li, Cequn  |e verfasserin  |4 aut 
700 1 |a Nisi, Katharina  |e verfasserin  |4 aut 
700 1 |a El-Sherif, Hesham  |e verfasserin  |4 aut 
700 1 |a Wetherington, Maxwell T  |e verfasserin  |4 aut 
700 1 |a Dong, Chengye  |e verfasserin  |4 aut 
700 1 |a Bostwick, Aaron  |e verfasserin  |4 aut 
700 1 |a Jozwiak, Chris  |e verfasserin  |4 aut 
700 1 |a van Duin, Adri C T  |e verfasserin  |4 aut 
700 1 |a Bassim, Nabil  |e verfasserin  |4 aut 
700 1 |a Zhu, Jun  |e verfasserin  |4 aut 
700 1 |a Wang, Gwo-Ching  |e verfasserin  |4 aut 
700 1 |a Wurstbauer, Ursula  |e verfasserin  |4 aut 
700 1 |a Rotenberg, Eli  |e verfasserin  |4 aut 
700 1 |a Crespi, Vincent  |e verfasserin  |4 aut 
700 1 |a Quek, Su Ying  |e verfasserin  |4 aut 
700 1 |a Robinson, Joshua A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 33(2021), 44 vom: 01. Nov., Seite e2104265  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:33  |g year:2021  |g number:44  |g day:01  |g month:11  |g pages:e2104265 
856 4 0 |u http://dx.doi.org/10.1002/adma.202104265  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2021  |e 44  |b 01  |c 11  |h e2104265