|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM330229265 |
003 |
DE-627 |
005 |
20231225210833.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202101126
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1100.xml
|
035 |
|
|
|a (DE-627)NLM330229265
|
035 |
|
|
|a (NLM)34480495
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Fan, Guilan
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Nanoporous NiSb to Enhance Nitrogen Electroreduction via Tailoring Competitive Adsorption Sites
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 20.10.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 Wiley-VCH GmbH.
|
520 |
|
|
|a Ambient nitrogen reduction reaction (NRR) is attracting extensive interest but still suffers from sluggish kinetics owing to competitive rapid hydrogen evolution and difficult nitrogen activation. Herein, nanoporous NiSb alloy is reported as an efficient electrocatalyst for N2 fixation, achieving a high ammonia yield rate of 56.9 µg h-1 mg-1 with a Faradaic efficiency of 48.0%. Density functional theory calculations reveal that in NiSb alloy, Ni favors N2 hydrogenation while the neighboring Sb separates active sites for proton and N2 adsorption, which optimizes the adsorption/desorption of intermediates and enables an energetically favorable NRR pathway. This work indicates promising electrocatalytic application of the alloys of 3d and p block metals toward the NRR and provides an intriguing strategy to enhance the reduction of inert molecules by restraining the competitive hydrogen adsorption
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a NiSb alloy
|
650 |
|
4 |
|a dealloying
|
650 |
|
4 |
|a electrocatalysis
|
650 |
|
4 |
|a nitrogen reduction reaction
|
700 |
1 |
|
|a Xu, Wence
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Jinhan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Jia-Liang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yu, Meng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ni, Youxuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Shengli
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Su, Xun-Cheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cheng, Fangyi
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 33(2021), 42 vom: 01. Okt., Seite e2101126
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2021
|g number:42
|g day:01
|g month:10
|g pages:e2101126
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202101126
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2021
|e 42
|b 01
|c 10
|h e2101126
|