LEADER 01000caa a22002652c 4500
001 NLM330210378
003 DE-627
005 20250302105918.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.15872  |2 doi 
028 5 2 |a pubmed25n1100.xml 
035 |a (DE-627)NLM330210378 
035 |a (NLM)34478589 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Konings, Alexandra G  |e verfasserin  |4 aut 
245 1 0 |a Detecting forest response to droughts with global observations of vegetation water content 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 17.11.2021 
500 |a Date Revised 31.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 The Authors. Global Change Biology published by John Wiley & Sons Ltd. 
520 |a Droughts in a warming climate have become more common and more extreme, making understanding forest responses to water stress increasingly pressing. Analysis of water stress in trees has long focused on water potential in xylem and leaves, which influences stomatal closure and water flow through the soil-plant-atmosphere continuum. At the same time, changes of vegetation water content (VWC) are linked to a range of tree responses, including fluxes of water and carbon, mortality, flammability, and more. Unlike water potential, which requires demanding in situ measurements, VWC can be retrieved from remote sensing measurements, particularly at microwave frequencies using radar and radiometry. Here, we highlight key frontiers through which VWC has the potential to significantly increase our understanding of forest responses to water stress. To validate remote sensing observations of VWC at landscape scale and to better relate them to data assimilation model parameters, we introduce an ecosystem-scale analog of the pressure-volume curve, the non-linear relationship between average leaf or branch water potential and water content commonly used in plant hydraulics. The sources of variability in these ecosystem-scale pressure-volume curves and their relationship to forest response to water stress are discussed. We further show to what extent diel, seasonal, and decadal dynamics of VWC reflect variations in different processes relating the tree response to water stress. VWC can also be used for inferring belowground conditions-which are difficult to impossible to observe directly. Lastly, we discuss how a dedicated geostationary spaceborne observational system for VWC, when combined with existing datasets, can capture diel and seasonal water dynamics to advance the science and applications of global forest vulnerability to future droughts 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a drought response 
650 4 |a drought-induced tree mortality 
650 4 |a microwave remote sensing 
650 4 |a pressure-volume 
650 4 |a vegetation optical depth 
650 4 |a vegetation water content 
650 4 |a water potential 
700 1 |a Saatchi, Sassan S  |e verfasserin  |4 aut 
700 1 |a Frankenberg, Christian  |e verfasserin  |4 aut 
700 1 |a Keller, Michael  |e verfasserin  |4 aut 
700 1 |a Leshyk, Victor  |e verfasserin  |4 aut 
700 1 |a Anderegg, William R L  |e verfasserin  |4 aut 
700 1 |a Humphrey, Vincent  |e verfasserin  |4 aut 
700 1 |a Matheny, Ashley M  |e verfasserin  |4 aut 
700 1 |a Trugman, Anna  |e verfasserin  |4 aut 
700 1 |a Sack, Lawren  |e verfasserin  |4 aut 
700 1 |a Agee, Elizabeth  |e verfasserin  |4 aut 
700 1 |a Barnes, Mallory L  |e verfasserin  |4 aut 
700 1 |a Binks, Oliver  |e verfasserin  |4 aut 
700 1 |a Cawse-Nicholson, Kerry  |e verfasserin  |4 aut 
700 1 |a Christoffersen, Bradley O  |e verfasserin  |4 aut 
700 1 |a Entekhabi, Dara  |e verfasserin  |4 aut 
700 1 |a Gentine, Pierre  |e verfasserin  |4 aut 
700 1 |a Holtzman, Nataniel M  |e verfasserin  |4 aut 
700 1 |a Katul, Gabriel G  |e verfasserin  |4 aut 
700 1 |a Liu, Yanlan  |e verfasserin  |4 aut 
700 1 |a Longo, Marcos  |e verfasserin  |4 aut 
700 1 |a Martinez-Vilalta, Jordi  |e verfasserin  |4 aut 
700 1 |a McDowell, Nate  |e verfasserin  |4 aut 
700 1 |a Meir, Patrick  |e verfasserin  |4 aut 
700 1 |a Mencuccini, Maurizio  |e verfasserin  |4 aut 
700 1 |a Mrad, Assaad  |e verfasserin  |4 aut 
700 1 |a Novick, Kimberly A  |e verfasserin  |4 aut 
700 1 |a Oliveira, Rafael S  |e verfasserin  |4 aut 
700 1 |a Siqueira, Paul  |e verfasserin  |4 aut 
700 1 |a Steele-Dunne, Susan C  |e verfasserin  |4 aut 
700 1 |a Thompson, David R  |e verfasserin  |4 aut 
700 1 |a Wang, Yujie  |e verfasserin  |4 aut 
700 1 |a Wehr, Richard  |e verfasserin  |4 aut 
700 1 |a Wood, Jeffrey D  |e verfasserin  |4 aut 
700 1 |a Xu, Xiangtao  |e verfasserin  |4 aut 
700 1 |a Zuidema, Pieter A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 27(2021), 23 vom: 01. Dez., Seite 6005-6024  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnas 
773 1 8 |g volume:27  |g year:2021  |g number:23  |g day:01  |g month:12  |g pages:6005-6024 
856 4 0 |u http://dx.doi.org/10.1111/gcb.15872  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 23  |b 01  |c 12  |h 6005-6024