Relationship-Based Point Cloud Completion

We propose a partial point cloud completion approach for scenes that are composed of multiple objects. We focus on pairwise scenes where two objects are in close proximity and are contextually related to each other, such as a chair tucked in a desk, a fruit in a basket, a hat on a hook and a flower...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 28(2022), 12 vom: 15. Dez., Seite 4940-4950
1. Verfasser: Zhao, Xi (VerfasserIn)
Weitere Verfasser: Zhang, Bowen, Wu, Jinji, Hu, Ruizhen, Komura, Taku
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM330208241
003 DE-627
005 20231225210806.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2021.3109392  |2 doi 
028 5 2 |a pubmed24n1100.xml 
035 |a (DE-627)NLM330208241 
035 |a (NLM)34478371 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhao, Xi  |e verfasserin  |4 aut 
245 1 0 |a Relationship-Based Point Cloud Completion 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.10.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose a partial point cloud completion approach for scenes that are composed of multiple objects. We focus on pairwise scenes where two objects are in close proximity and are contextually related to each other, such as a chair tucked in a desk, a fruit in a basket, a hat on a hook and a flower in a vase. Different from existing point cloud completion methods, which mainly focus on single objects, we design a network that encodes not only the geometry of the individual shapes, but also the spatial relations between different objects. More specifically, we complete missing parts of the objects in a conditional manner, where the partial or completed point cloud of the other object is used as an additional input to help predict missing parts. Based on the idea of conditional completion, we further propose a two-path network, which is guided by a consistency loss between different sequences of completion. Our method can handle difficult cases where the objects heavily occlude each other. Also, it only requires a small set of training data to reconstruct the interaction area compared to existing completion approaches. We evaluate our method qualitatively and quantitatively via ablation studies and in comparison to the state-of-the-art point cloud completion methods 
650 4 |a Journal Article 
700 1 |a Zhang, Bowen  |e verfasserin  |4 aut 
700 1 |a Wu, Jinji  |e verfasserin  |4 aut 
700 1 |a Hu, Ruizhen  |e verfasserin  |4 aut 
700 1 |a Komura, Taku  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 28(2022), 12 vom: 15. Dez., Seite 4940-4950  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:28  |g year:2022  |g number:12  |g day:15  |g month:12  |g pages:4940-4950 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2021.3109392  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2022  |e 12  |b 15  |c 12  |h 4940-4950