Divergence-Agnostic Unsupervised Domain Adaptation by Adversarial Attacks

Conventional machine learning algorithms suffer the problem that the model trained on existing data fails to generalize well to the data sampled from other distributions. To tackle this issue, unsupervised domain adaptation (UDA) transfers the knowledge learned from a well-labeled source domain to a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 11 vom: 15. Nov., Seite 8196-8211
1. Verfasser: Li, Jingjing (VerfasserIn)
Weitere Verfasser: Du, Zhekai, Zhu, Lei, Ding, Zhengming, Lu, Ke, Shen, Heng Tao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't