Photoregulated Morphological Transformation of Spiropyran Derivatives Achieving the Tunability of Interfacial Hydrophilicity

Regulation of self-assembly morphology is an effective strategy to obtain advanced functional materials with expected properties. However, achieving remarkable morphological transformation by light irradiation is still a challenge. Herein, three simple spiropyran derivatives (SP1, SP2, and SP3) are...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 37 vom: 21. Sept., Seite 11170-11175
1. Verfasser: Wang, Qian (VerfasserIn)
Weitere Verfasser: Wu, Zhen, Qin, Penghua, Ji, Jing, Lai, Liming, Yin, Meizhen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Regulation of self-assembly morphology is an effective strategy to obtain advanced functional materials with expected properties. However, achieving remarkable morphological transformation by light irradiation is still a challenge. Herein, three simple spiropyran derivatives (SP1, SP2, and SP3) are constructed, achieving different degrees of morphological transformation from nanospheres to hollow tadpole-like structures (SP3), tubular structures (SP2), and microsheets (SP1) after ultraviolet light irradiation. Interestingly, the hollow tadpole-like structures (SP3) can further extend to Y-shaped or T-shaped tubular morphology. In the process, SP1, SP2, and SP3 can be isomerized from a closed-ring form (hydrophobicity) to an open-ring form (hydrophilicity) in different degrees, interacting differently with methanol solvent molecules. The formation of hollow structures or microsheets along with the isomerization of spiropyran derivatives contributes to the adjustment of the hydrophilicity of the interface. Therefore, SP1, SP2, and SP3 with photoregulated morphological transformation show promising applications in tunable interface materials
Beschreibung:Date Revised 21.09.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.1c02053