Research on the efficient water-absorbing ceramsite generated by dredged sediments in Dian Lake-China and coal fly ash

© 2021 Water Environment Federation.

Bibliographische Detailangaben
Veröffentlicht in:Water environment research : a research publication of the Water Environment Federation. - 1998. - 93(2021), 11 vom: 01. Nov., Seite 2769-2779
1. Verfasser: Cai, Yingying (VerfasserIn)
Weitere Verfasser: Gao, Haijun, Qu, Guangfei, Ning, Ping, Hu, Yinghui, Zou, Hongmei, Ren, Nanqi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Water environment research : a research publication of the Water Environment Federation
Schlagworte:Journal Article Comsol Multiphysics coal fly ash dredged sediment efficient water-absorbing ceramsite heavy metals leaching Coal Coal Ash Complex Mixtures Metals, Heavy mehr... Particulate Matter Solid Waste ceramsite Water 059QF0KO0R Carbon 7440-44-0
Beschreibung
Zusammenfassung:© 2021 Water Environment Federation.
In order to transform the dredged sediment (DS) into an efficient water-absorbing ceramsite (EWAC), the coal fly ash (CFA) and expansion agent were used to blend, expand, and sinter with the DS in the Dian Lake-China. A new type of high EWAC was prepared with the absorption ratio of 66.71%, which was much higher than similar products. The heavy metals leaching (HML) of EWAC showed that the concentration of As was 0.90 mg/L and the Hg, Pb, Cd, and Cr were too low to be detected. The characterization analysis showed that the EWAC cross section contained a lot of hydroxyl, ether, and P-Cl hydrophilic group by Fourier transform infrared (FT-IR), scanning electron microscope (SEM), and Brunauer-Emmett-Teller (BET) specific surface area (SSA) test method. The above groups and structures could greatly improve the water absorption (WA) performance of the EWAC. What's more, the SSA of the EWAC could reach 4.468 m2 /g. The results of Comsol Multiphysics indicated that the SSA and average pore size (APS) of the EWACs were 10 and 6 times higher than the commercial ceramsites, respectively. The research provided the utilization of the DS with technical and theoretical basis for the construction of sponge city. PRACTITIONER POINTS: The article was focus on the utilization of dredged sediment (DS) and coal fly ash (CFA) for the basic material preparation technology and its toxicity test as the sponge city. First, the raw materials were the DS in Dian Lake (Kunming, Yunnan, China) and CFA (thermal power plants), which were all belonged to the hazardous solid waste and was made to the efficient water-absorbing ceramsite (EWAC). Second, the water absorption (WA) performance of the EWAC was improved greatly whose absorption ratio was much higher than similar products reached 66.71%. The specific surface area (SSA) and average pore size (APS) of the EWACs were 10 and 6 times higher than the commercial ceramsites (CCs), respectively. Finally, the heavy metals leaching (HML) of As was 0.90 mg/L, and the HML of Hg, Pb, Cd, and Cr was all lower than 0.05 mg/L, which could not only not cause secondary pollution but provide the new ideas for the resource utilization of large amount of DS. So, we thought this article was suitable for the journal
Beschreibung:Date Completed 03.11.2021
Date Revised 03.11.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1554-7531
DOI:10.1002/wer.1634