Visual Explanation for Deep Metric Learning

This work explores the visual explanation for deep metric learning and its applications. As an important problem for learning representation, metric learning has attracted much attention recently, while the interpretation of the metric learning model is not as well-studied as classification. To this...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 7593-7607
1. Verfasser: Zhu, Sijie (VerfasserIn)
Weitere Verfasser: Yang, Taojiannan, Chen, Chen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM330118471
003 DE-627
005 20231225210613.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3107214  |2 doi 
028 5 2 |a pubmed24n1100.xml 
035 |a (DE-627)NLM330118471 
035 |a (NLM)34469296 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhu, Sijie  |e verfasserin  |4 aut 
245 1 0 |a Visual Explanation for Deep Metric Learning 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 09.09.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This work explores the visual explanation for deep metric learning and its applications. As an important problem for learning representation, metric learning has attracted much attention recently, while the interpretation of the metric learning model is not as well-studied as classification. To this end, we propose an intuitive idea to show where contributes the most to the overall similarity of two input images by decomposing the final activation. Instead of only providing the overall activation map of each image, we propose to generate point-to-point activation intensity between two images so that the relationship between different regions is uncovered. We show that the proposed framework can be directly applied to a wide range of metric learning applications and provides valuable information for model understanding. Both theoretical and empirical analyses are provided to demonstrate the superiority of the proposed overall activation map over existing methods. Furthermore, our experiments validate the effectiveness of the proposed point-specific activation map on two applications, i.e. cross-view pattern discovery and interactive retrieval. Code is available at https://github.com/Jeff-Zilence/Explain_Metric_Learning 
650 4 |a Journal Article 
700 1 |a Yang, Taojiannan  |e verfasserin  |4 aut 
700 1 |a Chen, Chen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 01., Seite 7593-7607  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:01  |g pages:7593-7607 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3107214  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 01  |h 7593-7607