Ambulatory Cardiovascular Monitoring Via a Machine-Learning-Assisted Textile Triboelectric Sensor

© 2021 Wiley-VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 41 vom: 20. Okt., Seite e2104178
Auteur principal: Fang, Yunsheng (Auteur)
Autres auteurs: Zou, Yongjiu, Xu, Jing, Chen, Guorui, Zhou, Yihao, Deng, Weili, Zhao, Xun, Roustaei, Mehrdad, Hsiai, Tzung K, Chen, Jun
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article carbon nanotubes machine learning motion artifacts personalized healthcare pulse wave monitoring smart textiles Nanotubes, Carbon
LEADER 01000caa a22002652c 4500
001 NLM33010232X
003 DE-627
005 20250302104337.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202104178  |2 doi 
028 5 2 |a pubmed25n1100.xml 
035 |a (DE-627)NLM33010232X 
035 |a (NLM)34467585 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fang, Yunsheng  |e verfasserin  |4 aut 
245 1 0 |a Ambulatory Cardiovascular Monitoring Via a Machine-Learning-Assisted Textile Triboelectric Sensor 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.02.2022 
500 |a Date Revised 30.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 Wiley-VCH GmbH. 
520 |a Wearable bioelectronics for continuous and reliable pulse wave monitoring against body motion and perspiration remains a great challenge and highly desired. Here, a low-cost, lightweight, and mechanically durable textile triboelectric sensor that can convert subtle skin deformation caused by arterial pulsatility into electricity for high-fidelity and continuous pulse waveform monitoring in an ambulatory and sweaty setting is developed. The sensor holds a signal-to-noise ratio of 23.3 dB, a response time of 40 ms, and a sensitivity of 0.21 µA kPa-1 . With the assistance of machine learning algorithms, the textile triboelectric sensor can continuously and precisely measure systolic and diastolic pressure, and the accuracy is validated via a commercial blood pressure cuff at the hospital. Additionally, a customized cellphone application (APP) based on built-in algorithm is developed for one-click health data sharing and data-driven cardiovascular diagnosis. The textile triboelectric sensor enabled wireless biomonitoring system is expected to offer a practical paradigm for continuous and personalized cardiovascular system characterization in the era of the Internet of Things 
650 4 |a Journal Article 
650 4 |a carbon nanotubes 
650 4 |a machine learning 
650 4 |a motion artifacts 
650 4 |a personalized healthcare 
650 4 |a pulse wave monitoring 
650 4 |a smart textiles 
650 7 |a Nanotubes, Carbon  |2 NLM 
700 1 |a Zou, Yongjiu  |e verfasserin  |4 aut 
700 1 |a Xu, Jing  |e verfasserin  |4 aut 
700 1 |a Chen, Guorui  |e verfasserin  |4 aut 
700 1 |a Zhou, Yihao  |e verfasserin  |4 aut 
700 1 |a Deng, Weili  |e verfasserin  |4 aut 
700 1 |a Zhao, Xun  |e verfasserin  |4 aut 
700 1 |a Roustaei, Mehrdad  |e verfasserin  |4 aut 
700 1 |a Hsiai, Tzung K  |e verfasserin  |4 aut 
700 1 |a Chen, Jun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 33(2021), 41 vom: 20. Okt., Seite e2104178  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:33  |g year:2021  |g number:41  |g day:20  |g month:10  |g pages:e2104178 
856 4 0 |u http://dx.doi.org/10.1002/adma.202104178  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2021  |e 41  |b 20  |c 10  |h e2104178