|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM33010232X |
003 |
DE-627 |
005 |
20250302104337.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202104178
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1100.xml
|
035 |
|
|
|a (DE-627)NLM33010232X
|
035 |
|
|
|a (NLM)34467585
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Fang, Yunsheng
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Ambulatory Cardiovascular Monitoring Via a Machine-Learning-Assisted Textile Triboelectric Sensor
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 07.02.2022
|
500 |
|
|
|a Date Revised 30.08.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2021 Wiley-VCH GmbH.
|
520 |
|
|
|a Wearable bioelectronics for continuous and reliable pulse wave monitoring against body motion and perspiration remains a great challenge and highly desired. Here, a low-cost, lightweight, and mechanically durable textile triboelectric sensor that can convert subtle skin deformation caused by arterial pulsatility into electricity for high-fidelity and continuous pulse waveform monitoring in an ambulatory and sweaty setting is developed. The sensor holds a signal-to-noise ratio of 23.3 dB, a response time of 40 ms, and a sensitivity of 0.21 µA kPa-1 . With the assistance of machine learning algorithms, the textile triboelectric sensor can continuously and precisely measure systolic and diastolic pressure, and the accuracy is validated via a commercial blood pressure cuff at the hospital. Additionally, a customized cellphone application (APP) based on built-in algorithm is developed for one-click health data sharing and data-driven cardiovascular diagnosis. The textile triboelectric sensor enabled wireless biomonitoring system is expected to offer a practical paradigm for continuous and personalized cardiovascular system characterization in the era of the Internet of Things
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a carbon nanotubes
|
650 |
|
4 |
|a machine learning
|
650 |
|
4 |
|a motion artifacts
|
650 |
|
4 |
|a personalized healthcare
|
650 |
|
4 |
|a pulse wave monitoring
|
650 |
|
4 |
|a smart textiles
|
650 |
|
7 |
|a Nanotubes, Carbon
|2 NLM
|
700 |
1 |
|
|a Zou, Yongjiu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Jing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Guorui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, Yihao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Deng, Weili
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Xun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Roustaei, Mehrdad
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hsiai, Tzung K
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Jun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 33(2021), 41 vom: 20. Okt., Seite e2104178
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:33
|g year:2021
|g number:41
|g day:20
|g month:10
|g pages:e2104178
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202104178
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2021
|e 41
|b 20
|c 10
|h e2104178
|