High carbon losses from oxygen-limited soils challenge biogeochemical theory and model assumptions

© 2021 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 27(2021), 23 vom: 30. Dez., Seite 6166-6180
1. Verfasser: Huang, Wenjuan (VerfasserIn)
Weitere Verfasser: Wang, Kefeng, Ye, Chenglong, Hockaday, William C, Wang, Gangsheng, Hall, Steven J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article ModEx carbon decomposition carbon stable isotope iron redox methane microbial model mineral-associated carbon oxygen fluctuation Soil mehr... Carbon Dioxide 142M471B3J Carbon 7440-44-0 Methane OP0UW79H66 Oxygen S88TT14065
LEADER 01000naa a22002652 4500
001 NLM330076906
003 DE-627
005 20231225210521.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.15867  |2 doi 
028 5 2 |a pubmed24n1100.xml 
035 |a (DE-627)NLM330076906 
035 |a (NLM)34464997 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Huang, Wenjuan  |e verfasserin  |4 aut 
245 1 0 |a High carbon losses from oxygen-limited soils challenge biogeochemical theory and model assumptions 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 17.11.2021 
500 |a Date Revised 17.11.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 The Authors. Global Change Biology published by John Wiley & Sons Ltd. 
520 |a Oxygen (O2 ) limitation contributes to persistence of large carbon (C) stocks in saturated soils. However, many soils experience spatiotemporal O2  fluctuations impacted by climate and land-use change, and O2 -mediated climate feedbacks from soil greenhouse gas emissions remain poorly constrained. Current theory and models posit that anoxia uniformly suppresses carbon (C) decomposition. Here we show that periodic anoxia may sustain or even stimulate decomposition over weeks to months in two disparate soils by increasing turnover and/or size of fast-cycling C pools relative to static oxic conditions, and by sustaining decomposition of reduced organic molecules. Cumulative C losses did not decrease consistently as cumulative O2 exposure decreased. After >1 year, soils anoxic for 75% of the time had similar C losses as the oxic control but nearly threefold greater climate impact on a CO2 -equivalent basis (20-year timescale) due to high methane (CH4 ) emission. A mechanistic model incorporating current theory closely reproduced oxic control results but systematically underestimated C losses under O2  fluctuations. Using a model-experiment integration (ModEx) approach, we found that models were improved by varying microbial maintenance respiration and the fraction of CH4 production in total C mineralization as a function of O2 availability. Consistent with thermodynamic expectations, the calibrated models predicted lower microbial C-use efficiency with increasing anoxic duration in one soil; in the other soil, dynamic organo-mineral interactions implied by our empirical data but not represented in the model may have obscured this relationship. In both soils, the updated model was better able to capture transient spikes in C mineralization that occurred following anoxic-oxic transitions, where decomposition from the fluctuating-O2 treatments greatly exceeded the control. Overall, our data-model comparison indicates that incorporating emergent biogeochemical properties of soil O2 variability will be critical for effectively modeling C-climate feedbacks in humid ecosystems 
650 4 |a Journal Article 
650 4 |a ModEx 
650 4 |a carbon decomposition 
650 4 |a carbon stable isotope 
650 4 |a iron redox 
650 4 |a methane 
650 4 |a microbial model 
650 4 |a mineral-associated carbon 
650 4 |a oxygen fluctuation 
650 7 |a Soil  |2 NLM 
650 7 |a Carbon Dioxide  |2 NLM 
650 7 |a 142M471B3J  |2 NLM 
650 7 |a Carbon  |2 NLM 
650 7 |a 7440-44-0  |2 NLM 
650 7 |a Methane  |2 NLM 
650 7 |a OP0UW79H66  |2 NLM 
650 7 |a Oxygen  |2 NLM 
650 7 |a S88TT14065  |2 NLM 
700 1 |a Wang, Kefeng  |e verfasserin  |4 aut 
700 1 |a Ye, Chenglong  |e verfasserin  |4 aut 
700 1 |a Hockaday, William C  |e verfasserin  |4 aut 
700 1 |a Wang, Gangsheng  |e verfasserin  |4 aut 
700 1 |a Hall, Steven J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 27(2021), 23 vom: 30. Dez., Seite 6166-6180  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:23  |g day:30  |g month:12  |g pages:6166-6180 
856 4 0 |u http://dx.doi.org/10.1111/gcb.15867  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 23  |b 30  |c 12  |h 6166-6180