Synergistic Effect of Atomically Dispersed Ni-Zn Pair Sites for Enhanced CO2 Electroreduction

© 2021 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 41 vom: 18. Okt., Seite e2102212
1. Verfasser: Li, Youzhi (VerfasserIn)
Weitere Verfasser: Wei, Bo, Zhu, Minghui, Chen, Jiacheng, Jiang, Qike, Yang, Bin, Hou, Yang, Lei, Lecheng, Li, Zhongjian, Zhang, Ruifeng, Lu, Yingying
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article atomic-level Ni-Zn pair sites enhanced CO2 electroreduction kinetic pathways mechanistic understanding synergistic effects thermodynamic pathways
Beschreibung
Zusammenfassung:© 2021 Wiley-VCH GmbH.
Dual-atom catalysts have the potential to outperform the well-established single-atom catalysts for the electrochemical conversion of CO2 . However, the lack of understanding regarding the mechanism of this enhanced catalytic process prevents the rational design of high-performance catalysts. Herein, an obvious synergistic effect in atomically dispersed Ni-Zn bimetal sites is observed. In situ characterization combined with density functional theory (DFT) calculations reveals that heteronuclear coordination modifies the d-states of the metal atom, narrowing the gap between the d-band centre (εd ) of the Ni (3d) orbitals and the Fermi energy level (EF ) to strengthen the electronic interaction at the reaction interface, resulting in a lower free energy barrier (ΔG) in the thermodynamic pathway and a reduced activation energy (Ea ) as well as fortified metal-C bonding in the kinetic pathway. Consequently, a CO faradaic efficiency of >90% is obtained across a broad potential window from -0.5 to -1.0 V (vs RHE), reaching a maximum of 99% at -0.8 V, superior to that of the Ni/Zn single-metal sites
Beschreibung:Date Revised 13.10.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202102212