OsbZIP62/OsFD7, a functional ortholog of FLOWERING LOCUS D, regulates floral transition and panicle development in rice

© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 72(2021), 22 vom: 04. Dez., Seite 7826-7845
1. Verfasser: Kaur, Amarjot (VerfasserIn)
Weitere Verfasser: Nijhawan, Aashima, Yadav, Mahesh, Khurana, Jitendra P
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't OsFD bZIP protein floral transition panicle development rice shoot apical meristem (SAM) Plant Proteins
Beschreibung
Zusammenfassung:© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
We have characterized a rice bZIP protein-coding gene OsbZIP62/OsFD7 that is expressed preferentially in the shoot apical meristem and during early panicle developmental stages in comparison with other OsFD genes characterized to date. Surprisingly, unlike OsFD1, OsFD7 interacts directly and more efficiently with OsFTLs; the interaction is strongest with OsFTL1 followed by Hd3a and RFT1, as confirmed by fluorescence lifetime imaging-Förster resonant energy transfer (FLIM-FRET) analysis. In addition, OsFD7 is phosphorylated at its C-terminal end by OsCDPK41 and OsCDPK49 in vitro, and this phosphorylated moiety is recognized by OsGF14 proteins. OsFD7 RNAi transgenics were late flowering; the transcript levels of some floral meristem identity genes (e.g. OsMADS14, OsMADS15, and OsMADS18) were also down-regulated. RNAi lines also exhibited dense panicle morphology with an increase in the number of primary and secondary branches resulting in longer panicles and more seeds, probably due to down-regulation of SEPALLATA family genes. In comparison with other FD-like proteins previously characterized in rice, it appears that OsFD7 may have undergone diversification during evolution, resulting in the acquisition of newer functions and thus playing a dual role in floral transition and panicle development in rice
Beschreibung:Date Completed 30.12.2021
Date Revised 30.12.2021
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erab396