An adaptive speech signal processing for COVID-19 detection using deep learning approach

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.

Bibliographische Detailangaben
Veröffentlicht in:International journal of speech technology. - 1999. - 25(2022), 3 vom: 25., Seite 641-649
1. Verfasser: Al-Dhlan, Kawther A (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:International journal of speech technology
Schlagworte:Journal Article Retracted Publication Automatic speech recognition COVID-19 Generative adversarial network Mel-frequency cepstral coefficients
LEADER 01000caa a22002652c 4500
001 NLM329994247
003 DE-627
005 20250302102823.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10772-021-09878-0  |2 doi 
028 5 2 |a pubmed25n1099.xml 
035 |a (DE-627)NLM329994247 
035 |a (NLM)34456611 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Al-Dhlan, Kawther A  |e verfasserin  |4 aut 
245 1 3 |a An adaptive speech signal processing for COVID-19 detection using deep learning approach 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 18.10.2022 
500 |a published: Print-Electronic 
500 |a RetractionIn: Int J Speech Technol. 2022;25(Suppl 1):31. doi: 10.1007/s10772-022-09993-6. - PMID 36254274 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. 
520 |a Researchers and scientists have been conducting plenty of research on COVID-19 since its outbreak. Healthcare professionals, laboratory technicians, and front-line workers like sanitary workers, data collectors are putting tremendous efforts to avoid the prevalence of the COVID-19 pandemic. Currently, the reverse transcription polymerase chain reaction (RT-PCR) testing strategy determines the COVID-19 virus. This RT-PCR processing is more expensive and induces violation of social distancing rules, and time-consuming. Therefore, this research work introduces generative adversarial network deep learning for quickly detect COVID-19 from speech signals. This proposed system consists of two stages, pre-processing and classification. This work uses the least mean square (LMS) filter algorithm to remove the noise or artifacts from input speech signals. After removing the noise, the proposed generative adversarial network classification method analyses the mel-frequency cepstral coefficients features and classifies the COVID-19 signals and non-COVID-19 signals. The results show a more prominent correlation of MFCCs with various COVID-19 cough and breathing sounds, while the sound is more robust between COVID-19 and non-COVID-19 models. As compared with the existing Artificial Neural Network, Convolutional Neural Network, and Recurrent Neural Network, the proposed GAN method obtains the best result. The precision, recall, accuracy, and F-measure of the proposed GAN are 96.54%, 96.15%, 98.56%, and 0.96, respectively 
650 4 |a Journal Article 
650 4 |a Retracted Publication 
650 4 |a Automatic speech recognition 
650 4 |a COVID-19 
650 4 |a Generative adversarial network 
650 4 |a Mel-frequency cepstral coefficients 
773 0 8 |i Enthalten in  |t International journal of speech technology  |d 1999  |g 25(2022), 3 vom: 25., Seite 641-649  |w (DE-627)NLM098241087  |x 1381-2416  |7 nnas 
773 1 8 |g volume:25  |g year:2022  |g number:3  |g day:25  |g pages:641-649 
856 4 0 |u http://dx.doi.org/10.1007/s10772-021-09878-0  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2022  |e 3  |b 25  |h 641-649