|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM329806513 |
003 |
DE-627 |
005 |
20231225205924.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/gcb.15865
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1099.xml
|
035 |
|
|
|a (DE-627)NLM329806513
|
035 |
|
|
|a (NLM)34437735
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Gong, Yu
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Vegetation composition modulates the interaction of climate warming and elevated nitrogen deposition on nitrous oxide flux in a boreal peatland
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 01.11.2021
|
500 |
|
|
|a Date Revised 01.11.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2021 John Wiley & Sons Ltd.
|
520 |
|
|
|a Northern peatlands with large organic nitrogen (N) storage have the potential to be N2 O hotspots under climate warming, elevated N deposition, and vegetation composition change caused by climate change. However, the interactions of these three factors and the primary controls on N2 O fluxes in peatlands are not well-known. Here, the three factors were manipulated in a boreal bog in western Newfoundland, Canada for 5 years. We found that warming mitigated the positive N effect on N2 O fluxes in the mid-growing season under intact vegetation owing to the increase of available N uptake by vegetation and less N for N2 O production. In contrast, warming strengthened the N effect on N2 O fluxes in the early growing season under the absence of graminoids or shrubs, which could be attributed to the increase of available carbon and nitrogen for N2 O production. It should be noted that these effects were not observed under the condition of low carbon availability. In addition, gross primary production was found as a critical control on N2 O fluxes under N addition. Our findings emphasize that the interaction of abiotic (warming and elevated nitrogen deposition) and biotic factors (vegetation composition change) on N2 O fluxes should be taken into account in order to project N2 O fluxes in peatland ecosystems accurately
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a N deposition
|
650 |
|
4 |
|a N2O
|
650 |
|
4 |
|a global warming
|
650 |
|
4 |
|a vegetation composition
|
650 |
|
7 |
|a Soil
|2 NLM
|
650 |
|
7 |
|a Carbon Dioxide
|2 NLM
|
650 |
|
7 |
|a 142M471B3J
|2 NLM
|
650 |
|
7 |
|a Nitrous Oxide
|2 NLM
|
650 |
|
7 |
|a K50XQU1029
|2 NLM
|
650 |
|
7 |
|a Nitrogen
|2 NLM
|
650 |
|
7 |
|a N762921K75
|2 NLM
|
700 |
1 |
|
|a Wu, Jianghua
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Global change biology
|d 1999
|g 27(2021), 21 vom: 26. Nov., Seite 5588-5598
|w (DE-627)NLM098239996
|x 1365-2486
|7 nnns
|
773 |
1 |
8 |
|g volume:27
|g year:2021
|g number:21
|g day:26
|g month:11
|g pages:5588-5598
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/gcb.15865
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 27
|j 2021
|e 21
|b 26
|c 11
|h 5588-5598
|