A Highly Efficient Model to Study the Semantics of Salient Object Detection

CNN-based salient object detection (SOD) methods achieve impressive performance. However, the way semantic information is encoded in them and whether they are category-agnostic is less explored. One major obstacle in studying these questions is the fact that SOD models are built on top of the ImageN...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 11 vom: 01. Nov., Seite 8006-8021
1. Verfasser: Cheng, Ming-Ming (VerfasserIn)
Weitere Verfasser: Gao, Shang-Hua, Borji, Ali, Tan, Yong-Qiang, Lin, Zheng, Wang, Meng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM329801724
003 DE-627
005 20231225205918.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3107956  |2 doi 
028 5 2 |a pubmed24n1099.xml 
035 |a (DE-627)NLM329801724 
035 |a (NLM)34437058 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cheng, Ming-Ming  |e verfasserin  |4 aut 
245 1 2 |a A Highly Efficient Model to Study the Semantics of Salient Object Detection 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.10.2022 
500 |a Date Revised 19.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a CNN-based salient object detection (SOD) methods achieve impressive performance. However, the way semantic information is encoded in them and whether they are category-agnostic is less explored. One major obstacle in studying these questions is the fact that SOD models are built on top of the ImageNet pre-trained backbones which may cause information leakage and feature redundancy. To remedy this, here we first propose an extremely light-weight holistic model tied to the SOD task that can be freed from classification backbones and trained from scratch, and then employ it to study the semantics of SOD models. With the holistic network and representation redundancy reduction by a novel dynamic weight decay scheme, our model has only 100K parameters,  ∼  0.2% of parameters of large models, and performs on par with SOTA on popular SOD benchmarks. Using CSNet, we find that a) SOD and classification methods use different mechanisms, b) SOD models are category insensitive, c) ImageNet pre-training is not necessary for SOD training, and d) SOD models require far fewer parameters than the classification models. The source code is publicly available at https://mmcheng.net/sod100k/ 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Gao, Shang-Hua  |e verfasserin  |4 aut 
700 1 |a Borji, Ali  |e verfasserin  |4 aut 
700 1 |a Tan, Yong-Qiang  |e verfasserin  |4 aut 
700 1 |a Lin, Zheng  |e verfasserin  |4 aut 
700 1 |a Wang, Meng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 11 vom: 01. Nov., Seite 8006-8021  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:11  |g day:01  |g month:11  |g pages:8006-8021 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3107956  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 11  |b 01  |c 11  |h 8006-8021