LEADER 01000caa a22002652c 4500
001 NLM329747797
003 DE-627
005 20250302095202.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202102489  |2 doi 
028 5 2 |a pubmed25n1098.xml 
035 |a (DE-627)NLM329747797 
035 |a (NLM)34431569 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ruland, André  |e verfasserin  |4 aut 
245 1 0 |a Amphiphilic Copolymers for Versatile, Facile, and In Situ Tunable Surface Biofunctionalization 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.02.2022 
500 |a Date Revised 13.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH. 
520 |a Precision surface engineering is key to advanced biomaterials. A new platform of PEGylated styrene-maleic acid copolymers for adsorptive surface biofunctionalization is reported. Balanced amphiphilicity renders the copolymers water-soluble but strongly affine for surfaces. Fine-tuning of their molecular architecture provides control over adsorptive anchorage onto specific materials-which is why they are referred to as "anchor polymers" (APs)-and over structural characteristics of the adsorbed layers. Conjugatable with an array of bioactives-including cytokine-complexing glycosaminoglycans, cell-adhesion-mediating peptides and antimicrobials-APs can be applied to customize materials for demanding biotechnologies in uniquely versatile, simple, and robust ways. Moreover, homo- and heterodisplacement of adsorbed APs provide unprecedented means of in situ alteration and renewal of the functionalized surfaces. The related options are exemplified with proof-of-concept experiments of controlled bacterial adhesion, human umbilical vein endothelial cell, and induced pluripotent cell growth on AP-functionalized surfaces 
650 4 |a Journal Article 
650 4 |a adsorptive surface functionalization 
650 4 |a antimicrobial surface properties 
650 4 |a cell-instructive properties 
650 4 |a styrene-maleic anhydride copolymers 
650 7 |a Anti-Infective Agents  |2 NLM 
650 7 |a Biocompatible Materials  |2 NLM 
650 7 |a Cytokines  |2 NLM 
650 7 |a Glycosaminoglycans  |2 NLM 
650 7 |a Maleates  |2 NLM 
650 7 |a Oligopeptides  |2 NLM 
650 7 |a Polymers  |2 NLM 
650 7 |a Polyethylene Glycols  |2 NLM 
650 7 |a 3WJQ0SDW1A  |2 NLM 
650 7 |a Styrene  |2 NLM 
650 7 |a 44LJ2U959V  |2 NLM 
650 7 |a arginyl-glycyl-aspartic acid  |2 NLM 
650 7 |a 78VO7F77PN  |2 NLM 
650 7 |a maleic acid  |2 NLM 
650 7 |a 91XW058U2C  |2 NLM 
700 1 |a Schenker, Saskia  |e verfasserin  |4 aut 
700 1 |a Schirmer, Lucas  |e verfasserin  |4 aut 
700 1 |a Friedrichs, Jens  |e verfasserin  |4 aut 
700 1 |a Meinhardt, Andrea  |e verfasserin  |4 aut 
700 1 |a Schwartz, Véronique B  |e verfasserin  |4 aut 
700 1 |a Kaiser, Nadine  |e verfasserin  |4 aut 
700 1 |a Konradi, Rupert  |e verfasserin  |4 aut 
700 1 |a MacDonald, William  |e verfasserin  |4 aut 
700 1 |a Helmecke, Tina  |e verfasserin  |4 aut 
700 1 |a Sikosana, Melissa K L N  |e verfasserin  |4 aut 
700 1 |a Valtin, Juliane  |e verfasserin  |4 aut 
700 1 |a Hahn, Dominik  |e verfasserin  |4 aut 
700 1 |a Renner, Lars D  |e verfasserin  |4 aut 
700 1 |a Werner, Carsten  |e verfasserin  |4 aut 
700 1 |a Freudenberg, Uwe  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 33(2021), 42 vom: 01. Okt., Seite e2102489  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:33  |g year:2021  |g number:42  |g day:01  |g month:10  |g pages:e2102489 
856 4 0 |u http://dx.doi.org/10.1002/adma.202102489  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2021  |e 42  |b 01  |c 10  |h e2102489