Pangolin-Inspired Stretchable, Microwave-Invisible Metascale

© 2021 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 41 vom: 20. Okt., Seite e2102131
1. Verfasser: Wang, Changxian (VerfasserIn)
Weitere Verfasser: Lv, Zhisheng, Mohan, Manoj Prabhakar, Cui, Zequn, Liu, Zhihua, Jiang, Ying, Li, Jiaofu, Wang, Cong, Pan, Shaowu, Karim, Muhammad Faeyz, Liu, Ai Qun, Chen, Xiaodong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article conformability microwave absorption nondevelopable surfaces penetration resistance stretchable absorbers
Beschreibung
Zusammenfassung:© 2021 Wiley-VCH GmbH.
Microwave-invisible devices are emerging as a valuable technology in various applications, including soft robotics, shape-morphing structures, and textural camouflages, especially in electronic countermeasures. Unfortunately, conventional microwave-absorbing metastructures and bulk absorbers are stretching confined, limiting their application in deformable or special-shaped targets. To overcome such limitations, a conceptually novel soft-rigid-connection strategy, inspired by the pangolin, is proposed. Pangolin-inspired metascale (PIMS), which is a kind of stretchable metamaterial consisting of an electromagnetic dissipative scale (EMD-scale) and elastomer, is rationally designed. Such a device exhibits robust microwave-absorbing capacity under the interference of 50% stretching. Besides, profiting from the covering effect and size-confined effect of EMD-scale, the out-of-plane indentation failure force of PIMS is at least 5 times larger than conventional device. As a proof of concept, the proposed device is conformally pasted on nondevelopable surfaces. For a spherical dome surface, the maximum radar cross-section (RCS) reduction of PIMS is 6.3 dB larger than that of a conventional device, while for a saddle surface, the bandwidth of 10 dB RCS reduction exhibits an increase of 83%. In short, this work provides a conceptually novel platform to develop stretchable, nondevelopable surface conformable functional devices
Beschreibung:Date Revised 13.10.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202102131