Evaluation of a new multiple regression model based on biochemical parameters for the distinction of canine exudates and transudates

© 2021 American Society for Veterinary Clinical Pathology.

Bibliographische Detailangaben
Veröffentlicht in:Veterinary clinical pathology. - 1975. - 50(2021), 3 vom: 25. Sept., Seite 394-403
1. Verfasser: Alonso, Flavio H (VerfasserIn)
Weitere Verfasser: Mattoso, Claudio R S, Leme, Fabiola O P, Paes, Paulo R O
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Veterinary clinical pathology
Schlagworte:Journal Article albumin bilirubin cavitary effusion cholesterol general classification Albumins
LEADER 01000caa a22002652c 4500
001 NLM329743368
003 DE-627
005 20250302095125.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1111/vcp.12945  |2 doi 
028 5 2 |a pubmed25n1098.xml 
035 |a (DE-627)NLM329743368 
035 |a (NLM)34431116 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Alonso, Flavio H  |e verfasserin  |4 aut 
245 1 0 |a Evaluation of a new multiple regression model based on biochemical parameters for the distinction of canine exudates and transudates 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.09.2021 
500 |a Date Revised 30.09.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 American Society for Veterinary Clinical Pathology. 
520 |a BACKGROUND: The classification of effusions in human medicine currently uses biochemical parameters of verified analytical accuracy, while veterinary medicine is traditionally guided by protein content (TP) and total nucleated cell count (TNCC) in the effusion, without solid scientific support 
520 |a OBJECTIVE: We aimed to assess the accuracy of the current veterinary classification system to distinguish transudates from exudates and create new tools involving biochemical parameters that better classify canine cavitary effusions 
520 |a METHODS: Clinical, laboratory, and imaging data from 250 canine pleural and peritoneal effusions were retrospectively and prospectively collected, organized, and statistically evaluated. Multiple logistic regression analysis was performed using biochemical and cellular parameters 
520 |a RESULTS: For identifying exudates, the accuracy (87.7%, n = 204) of the best traditional classification system (TNCC > 3000 cells/μL) was similar to that of the individual biochemical cutoff values with the greatest accuracy in the abdominal cavity (eg, cholesterol, CHO-E > 40.1 mg/dL, 87.3%, n = 55). The accuracy of albumin (ALB-E > 0.8 g/dL) in the pleural cavity was nonetheless higher (100%, n = 23). The best multiple predictive models for any cavity used the percentage of neutrophils and CHO-E (n = 72), presenting an accuracy, sensitivity, and specificity for the diagnosis of exudate of 88%, 96%, and 67%, respectively 
520 |a CONCLUSIONS: Biochemical classification of pleural effusions has a higher accuracy than the traditional system (based on TP and TNCC). Utility and cutoff of analytes are different for each cavity. Implementing a multiple regression model or establishing ratios or gradients with concurrent serum values adds no significant improvement in the diagnostic potential of distinguishing transudate and exudates in dogs 
650 4 |a Journal Article 
650 4 |a albumin 
650 4 |a bilirubin 
650 4 |a cavitary effusion 
650 4 |a cholesterol 
650 4 |a general classification 
650 7 |a Albumins  |2 NLM 
700 1 |a Mattoso, Claudio R S  |e verfasserin  |4 aut 
700 1 |a Leme, Fabiola O P  |e verfasserin  |4 aut 
700 1 |a Paes, Paulo R O  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Veterinary clinical pathology  |d 1975  |g 50(2021), 3 vom: 25. Sept., Seite 394-403  |w (DE-627)NLM098159984  |x 1939-165X  |7 nnas 
773 1 8 |g volume:50  |g year:2021  |g number:3  |g day:25  |g month:09  |g pages:394-403 
856 4 0 |u http://dx.doi.org/10.1111/vcp.12945  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 50  |j 2021  |e 3  |b 25  |c 09  |h 394-403