Toward Real-World Super-Resolution via Adaptive Downsampling Models

Most image super-resolution (SR) methods are developed on synthetic low-resolution (LR) and high-resolution (HR) image pairs that are constructed by a predetermined operation, e.g., bicubic downsampling. As existing methods typically learn an inverse mapping of the specific function, they produce bl...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 11 vom: 15. Nov., Seite 8657-8670
1. Verfasser: Son, Sanghyun (VerfasserIn)
Weitere Verfasser: Kim, Jaeha, Lai, Wei-Sheng, Yang, Ming-Hsuan, Lee, Kyoung Mu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM329713760
003 DE-627
005 20231225205722.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3106790  |2 doi 
028 5 2 |a pubmed24n1099.xml 
035 |a (DE-627)NLM329713760 
035 |a (NLM)34428134 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Son, Sanghyun  |e verfasserin  |4 aut 
245 1 0 |a Toward Real-World Super-Resolution via Adaptive Downsampling Models 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.10.2022 
500 |a Date Revised 19.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Most image super-resolution (SR) methods are developed on synthetic low-resolution (LR) and high-resolution (HR) image pairs that are constructed by a predetermined operation, e.g., bicubic downsampling. As existing methods typically learn an inverse mapping of the specific function, they produce blurry results when applied to real-world images whose exact formulation is different and unknown. Therefore, several methods attempt to synthesize much more diverse LR samples or learn a realistic downsampling model. However, due to restrictive assumptions on the downsampling process, they are still biased and less generalizable. This study proposes a novel method to simulate an unknown downsampling process without imposing restrictive prior knowledge. We propose a generalizable low-frequency loss (LFL) in the adversarial training framework to imitate the distribution of target LR images without using any paired examples. Furthermore, we design an adaptive data loss (ADL) for the downsampler, which can be adaptively learned and updated from the data during the training loops. Extensive experiments validate that our downsampling model can facilitate existing SR methods to perform more accurate reconstructions on various synthetic and real-world examples than the conventional approaches 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Kim, Jaeha  |e verfasserin  |4 aut 
700 1 |a Lai, Wei-Sheng  |e verfasserin  |4 aut 
700 1 |a Yang, Ming-Hsuan  |e verfasserin  |4 aut 
700 1 |a Lee, Kyoung Mu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 11 vom: 15. Nov., Seite 8657-8670  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:11  |g day:15  |g month:11  |g pages:8657-8670 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3106790  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 11  |b 15  |c 11  |h 8657-8670