Adversarial Reciprocal Points Learning for Open Set Recognition

Open set recognition (OSR), aiming to simultaneously classify the seen classes and identify the unseen classes as 'unknown', is essential for reliable machine learning. The key challenge of OSR is how to reduce the empirical classification risk on the labeled known data and the open space...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 11 vom: 15. Nov., Seite 8065-8081
1. Verfasser: Chen, Guangyao (VerfasserIn)
Weitere Verfasser: Peng, Peixi, Wang, Xiangqian, Tian, Yonghong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM329713744
003 DE-627
005 20231225205722.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3106743  |2 doi 
028 5 2 |a pubmed24n1099.xml 
035 |a (DE-627)NLM329713744 
035 |a (NLM)34428133 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Guangyao  |e verfasserin  |4 aut 
245 1 0 |a Adversarial Reciprocal Points Learning for Open Set Recognition 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.10.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Open set recognition (OSR), aiming to simultaneously classify the seen classes and identify the unseen classes as 'unknown', is essential for reliable machine learning. The key challenge of OSR is how to reduce the empirical classification risk on the labeled known data and the open space risk on the potential unknown data simultaneously. To handle the challenge, we formulate the open space risk problem from the perspective of multi-class integration, and model the unexploited extra-class space with a novel concept Reciprocal Point. Follow this, a novel learning framework, termed Adversarial Reciprocal Point Learning (ARPL), is proposed to minimize the overlap of known distribution and unknown distributions without loss of known classification accuracy. Specifically, each reciprocal point is learned by the extra-class space with the corresponding known category, and the confrontation among multiple known categories are employed to reduce the empirical classification risk. Then, an adversarial margin constraint is proposed to reduce the open space risk by limiting the latent open space constructed by reciprocal points. To further estimate the unknown distribution from open space, an instantiated adversarial enhancement method is designed to generate diverse and confusing training samples, based on the adversarial mechanism between the reciprocal points and known classes. This can effectively enhance the model distinguishability to the unknown classes. Extensive experimental results on various benchmark datasets indicate that the proposed method is significantly superior to other existing approaches and achieves state-of-the-art performance. The code is released on github.com/iCGY96/ARPL 
650 4 |a Journal Article 
700 1 |a Peng, Peixi  |e verfasserin  |4 aut 
700 1 |a Wang, Xiangqian  |e verfasserin  |4 aut 
700 1 |a Tian, Yonghong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 11 vom: 15. Nov., Seite 8065-8081  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:11  |g day:15  |g month:11  |g pages:8065-8081 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3106743  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 11  |b 15  |c 11  |h 8065-8081