Water Bridges Substitute for Defects in Amine-Functionalized UiO-66, Boosting CO2 Adsorption

The binary adsorption of CO2 and water on an amine-functionalized UiO-66 metal-organic framework (MOF) was studied experimentally and computationally. Grand canonical Monte Carlo simulations were used to investigate three additional UiO-66 MOFs with different functionalized linkers. Each MOF was stu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 35 vom: 07. Sept., Seite 10439-10449
1. Verfasser: Hernandez, Arianjel F (VerfasserIn)
Weitere Verfasser: Impastato, Rebekah K, Hossain, Mohammad I, Rabideau, Brooks D, Glover, T Grant
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The binary adsorption of CO2 and water on an amine-functionalized UiO-66 metal-organic framework (MOF) was studied experimentally and computationally. Grand canonical Monte Carlo simulations were used to investigate three additional UiO-66 MOFs with different functionalized linkers. Each MOF was studied in a defect-free form as well as two additional forms with precise linker defects. Binary adsorption isotherms are presented for CO2 at specific water loadings. While water loading in defect-free MOFs reduces the CO2 uptake, the defects slightly boost the CO2 uptake at low water loadings. It was found that water bridges form between the metal oxide cores, replacing the missing linkers. Effectively, this creates smaller pores that are more welcoming of CO2 adsorption. Experimental measurement of the binary isotherms for UiO-66-NH2 shows a behavior that is consistent with this enhancement
Beschreibung:Date Revised 07.09.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.1c01149