Electrostatic Interaction-Based Fabrication of Calcium Alginate-Zein Core-Shell Microcapsules of Regulable Shapes and Sizes

Core-shell microcapsules with combined features of hydrophilicity and hydrophobicity have become much popular. However, the assembly of biocompatible and edible materials in hydrophilic-hydrophobic core-shell microcapsules is not easy. In this work, based on electrostatic interactions, we prepared c...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 35 vom: 07. Sept., Seite 10424-10432
1. Verfasser: Zhang, Xun (VerfasserIn)
Weitere Verfasser: Hu, Bing, Zhao, Yiguo, Yang, Yisu, Gao, Zhiming, Nishinari, Katsuyoshi, Yang, Jixin, Zhang, Yin, Fang, Yapeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Alginates Capsules Zein 9010-66-6
Beschreibung
Zusammenfassung:Core-shell microcapsules with combined features of hydrophilicity and hydrophobicity have become much popular. However, the assembly of biocompatible and edible materials in hydrophilic-hydrophobic core-shell microcapsules is not easy. In this work, based on electrostatic interactions, we prepared controllable calcium alginate (ALG)-zein core-shell particles of different shapes and sizes using hydrophilic ALG and hydrophobic zein by a two-step extrusion method. Negatively charged hydrogel beads of spherical, ellipsoidal, or fibrous shape were added into a positively charged zein solution (dissolved in 70% (v/v) aqueous ethanol solution) to achieve different-shaped core-shell particles. Interestingly, the size, shape, and shell thickness of the particles can be regulated by the needle diameter, stirring speed, and zein concentration. Moreover, for simplification, the core-shell particles were also synthesized by a one-step extrusion method, in which an ALG solution was added dropwise into a 70% (v/v) aqueous ethanol solution containing zein and CaCl2. The particles synthesized in this work showed controlled digestion of encapsulated medium-chain triglyceride (MCT) and sustained release of encapsulated thiamine and ethyl maltol. Our preparation method is simplistic and can be extended to fabricate a variety of hydrophilic and hydrophobic core-shell structures to encapsulate a broad spectrum of materials
Beschreibung:Date Completed 13.09.2021
Date Revised 13.09.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.1c01098