Differential evolution and particle swarm optimization against COVID-19

© The Author(s) 2021.

Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence review. - 1998. - 55(2022), 3 vom: 23., Seite 2149-2219
1. Verfasser: Piotrowski, Adam P (VerfasserIn)
Weitere Verfasser: Piotrowska, Agnieszka E
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Artificial intelligence review
Schlagworte:Journal Article Applications COVID-19 Differential evolution Evolutionary computation Particle swarm optimization Swarm intelligence
LEADER 01000caa a22002652 4500
001 NLM329699865
003 DE-627
005 20240828231856.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10462-021-10052-w  |2 doi 
028 5 2 |a pubmed24n1515.xml 
035 |a (DE-627)NLM329699865 
035 |a (NLM)34426713 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Piotrowski, Adam P  |e verfasserin  |4 aut 
245 1 0 |a Differential evolution and particle swarm optimization against COVID-19 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 28.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © The Author(s) 2021. 
520 |a COVID-19 disease, which highly affected global life in 2020, led to a rapid scientific response. Versatile optimization methods found their application in scientific studies related to COVID-19 pandemic. Differential Evolution (DE) and Particle Swarm Optimization (PSO) are two metaheuristics that for over two decades have been widely researched and used in various fields of science. In this paper a survey of DE and PSO applications for problems related with COVID-19 pandemic that were rapidly published in 2020 is presented from two different points of view: 1. practitioners seeking the appropriate method to solve particular problem, 2. experts in metaheuristics that are interested in methodological details, inter comparisons between different methods, and the ways for improvement. The effectiveness and popularity of DE and PSO is analyzed in the context of other metaheuristics used against COVID-19. It is found that in COVID-19 related studies: 1. DE and PSO are most frequently used for calibration of epidemiological models and image-based classification of patients or symptoms, but applications are versatile, even interconnecting the pandemic and humanities; 2. reporting on DE or PSO methodological details is often scarce, and the choices made are not necessarily appropriate for the particular algorithm or problem; 3. mainly the basic variants of DE and PSO that were proposed in the late XX century are applied, and research performed in recent two decades is rather ignored; 4. the number of citations and the availability of codes in various programming languages seems to be the main factors for choosing metaheuristics that are finally used 
650 4 |a Journal Article 
650 4 |a Applications 
650 4 |a COVID-19 
650 4 |a Differential evolution 
650 4 |a Evolutionary computation 
650 4 |a Particle swarm optimization 
650 4 |a Swarm intelligence 
700 1 |a Piotrowska, Agnieszka E  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Artificial intelligence review  |d 1998  |g 55(2022), 3 vom: 23., Seite 2149-2219  |w (DE-627)NLM098184490  |x 0269-2821  |7 nnns 
773 1 8 |g volume:55  |g year:2022  |g number:3  |g day:23  |g pages:2149-2219 
856 4 0 |u http://dx.doi.org/10.1007/s10462-021-10052-w  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 55  |j 2022  |e 3  |b 23  |h 2149-2219