High-Efficiency Ion-Exchange Doping of Conducting Polymers

© 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 22 vom: 11. Juni, Seite e2102988
Auteur principal: Jacobs, Ian E (Auteur)
Autres auteurs: Lin, Yue, Huang, Yuxuan, Ren, Xinglong, Simatos, Dimitrios, Chen, Chen, Tjhe, Dion, Statz, Martin, Lai, Lianglun, Finn, Peter A, Neal, William G, D'Avino, Gabriele, Lemaur, Vincent, Fratini, Simone, Beljonne, David, Strzalka, Joseph, Nielsen, Christian B, Barlow, Stephen, Marder, Seth R, McCulloch, Iain, Sirringhaus, Henning
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article conjugated polymers doping electrical conductivity electrochemistry ion exchange
LEADER 01000caa a22002652c 4500
001 NLM329622676
003 DE-627
005 20250302093416.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202102988  |2 doi 
028 5 2 |a pubmed25n1098.xml 
035 |a (DE-627)NLM329622676 
035 |a (NLM)34418878 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jacobs, Ian E  |e verfasserin  |4 aut 
245 1 0 |a High-Efficiency Ion-Exchange Doping of Conducting Polymers 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.06.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH. 
520 |a Molecular doping-the use of redox-active small molecules as dopants for organic semiconductors-has seen a surge in research interest driven by emerging applications in sensing, bioelectronics, and thermoelectrics. However, molecular doping carries with it several intrinsic problems stemming directly from the redox-active character of these materials. A recent breakthrough was a doping technique based on ion-exchange, which separates the redox and charge compensation steps of the doping process. Here, the equilibrium and kinetics of ion exchange doping in a model system, poly(2,5-bis(3-alkylthiophen-2-yl)thieno(3,2-b)thiophene) (PBTTT) doped with FeCl3 and an ionic liquid, is studied, reaching conductivities in excess of 1000 S cm-1 and ion exchange efficiencies above 99%. Several factors that enable such high performance, including the choice of acetonitrile as the doping solvent, which largely eliminates electrolyte association effects and dramatically increases the doping strength of FeCl3 , are demonstrated. In this high ion exchange efficiency regime, a simple connection between electrochemical doping and ion exchange is illustrated, and it is shown that the performance and stability of highly doped PBTTT is ultimately limited by intrinsically poor stability at high redox potential 
650 4 |a Journal Article 
650 4 |a conjugated polymers 
650 4 |a doping 
650 4 |a electrical conductivity 
650 4 |a electrochemistry 
650 4 |a ion exchange 
700 1 |a Lin, Yue  |e verfasserin  |4 aut 
700 1 |a Huang, Yuxuan  |e verfasserin  |4 aut 
700 1 |a Ren, Xinglong  |e verfasserin  |4 aut 
700 1 |a Simatos, Dimitrios  |e verfasserin  |4 aut 
700 1 |a Chen, Chen  |e verfasserin  |4 aut 
700 1 |a Tjhe, Dion  |e verfasserin  |4 aut 
700 1 |a Statz, Martin  |e verfasserin  |4 aut 
700 1 |a Lai, Lianglun  |e verfasserin  |4 aut 
700 1 |a Finn, Peter A  |e verfasserin  |4 aut 
700 1 |a Neal, William G  |e verfasserin  |4 aut 
700 1 |a D'Avino, Gabriele  |e verfasserin  |4 aut 
700 1 |a Lemaur, Vincent  |e verfasserin  |4 aut 
700 1 |a Fratini, Simone  |e verfasserin  |4 aut 
700 1 |a Beljonne, David  |e verfasserin  |4 aut 
700 1 |a Strzalka, Joseph  |e verfasserin  |4 aut 
700 1 |a Nielsen, Christian B  |e verfasserin  |4 aut 
700 1 |a Barlow, Stephen  |e verfasserin  |4 aut 
700 1 |a Marder, Seth R  |e verfasserin  |4 aut 
700 1 |a McCulloch, Iain  |e verfasserin  |4 aut 
700 1 |a Sirringhaus, Henning  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 22 vom: 11. Juni, Seite e2102988  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:34  |g year:2022  |g number:22  |g day:11  |g month:06  |g pages:e2102988 
856 4 0 |u http://dx.doi.org/10.1002/adma.202102988  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 22  |b 11  |c 06  |h e2102988