Electrochemistry-Induced Improvements of Mechanical Strength, Self-Healing, and Interfacial Adhesion of Hydrogels

© 2021 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 40 vom: 20. Okt., Seite e2102308
1. Verfasser: Miao, Yan (VerfasserIn)
Weitere Verfasser: Xu, Mengda, Zhang, Lidong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article bionic skin electrochemistry functionalization hydrogels interface adhesion sensing Acrylic Resins Hydrogels Carrageenan 9000-07-1 mehr... polyacrylamide 9003-05-8 Iron E1UOL152H7
Beschreibung
Zusammenfassung:© 2021 Wiley-VCH GmbH.
Hydrogels have demonstrated great potential in biomedical and engineering areas. To improve the physical performance, development of efficient physical/chemical protocols is essential. Herein, an electrochemistry functionalization strategy that is capable of enabling the functional improvements of hydrogel is reported. The electrochemistry functionalization is demonstrated on a hydrogel model of polyacrylamide (PAAm)κ-carrageenan. The electrochemistry reaction generates metal ions (Fe3+ ) that migrate and coordinate with the sulfate groups of κ-carrageenan resulting in the prominent function improvements. In comparison with untreated PAAm@κ-carrageenan hydrogel, it can improve the mechanical strength by 7.37 times, and can increase the interfacial adhesion energy of the hydrogel on a glass surface from 0 to 1400 J m-2 , stronger than the bonding strength of tendons (adhesion energy: ≈800 J m-2 ). Two pieces of hydrogel strips integrate into an intact structure by the electrochemistry functionalization, where the healing efficiency reaches 100% in comparison to the untreated hydrogel. The most significant development is that it enables functional patterning on the hydrogel by the electrode assembly, which provides the hydrogel with modular sensitivity to external pressure. Therefore, it can be a general protocol for rapid generation of multifunctional hydrogels for biomedical and engineering developments
Beschreibung:Date Completed 26.01.2022
Date Revised 26.01.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202102308