Kinship Verification Based on Cross-Generation Feature Interaction Learning

Kinship verification from facial images has been recognized as an emerging yet challenging technique in many potential computer vision applications. In this paper, we propose a novel cross-generation feature interaction learning (CFIL) framework for robust kinship verification. Particularly, an effe...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 04., Seite 7391-7403
1. Verfasser: Dong, Guan-Nan (VerfasserIn)
Weitere Verfasser: Pun, Chi-Man, Zhang, Zheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM329592351
003 DE-627
005 20231225205440.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3104192  |2 doi 
028 5 2 |a pubmed24n1098.xml 
035 |a (DE-627)NLM329592351 
035 |a (NLM)34415834 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dong, Guan-Nan  |e verfasserin  |4 aut 
245 1 0 |a Kinship Verification Based on Cross-Generation Feature Interaction Learning 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.08.2021 
500 |a Date Revised 27.08.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Kinship verification from facial images has been recognized as an emerging yet challenging technique in many potential computer vision applications. In this paper, we propose a novel cross-generation feature interaction learning (CFIL) framework for robust kinship verification. Particularly, an effective collaborative weighting strategy is constructed to explore the characteristics of cross-generation relations by corporately extracting features of both parents and children image pairs. Specifically, we take parents and children as a whole to extract the expressive local and non-local features. Different from the traditional works measuring similarity by distance, we interpolate the similarity calculations as the interior auxiliary weights into the deep CNN architecture to learn the whole and natural features. These similarity weights not only involve corresponding single points but also excavate the multiple relationships cross points, where local and non-local features are calculated by using these two kinds of distance measurements. Importantly, instead of separately conducting similarity computation and feature extraction, we integrate similarity learning and feature extraction into one unified learning process. The integrated representations deduced from local and non-local features can comprehensively express the informative semantics embedded in images and preserve abundant correlation knowledge from image pairs. Extensive experiments demonstrate the efficiency and superiority of the proposed model compared to some state-of-the-art kinship verification methods 
650 4 |a Journal Article 
700 1 |a Pun, Chi-Man  |e verfasserin  |4 aut 
700 1 |a Zhang, Zheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 04., Seite 7391-7403  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:04  |g pages:7391-7403 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3104192  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 04  |h 7391-7403