TPSSI-Net : Fast and Enhanced Two-Path Iterative Network for 3D SAR Sparse Imaging

The emerging field of combining compressed sensing (CS) and three-dimensional synthetic aperture radar (3D SAR) imaging has shown significant potential to reduce sampling rate and improve image quality. However, the conventional CS-driven algorithms are always limited by huge computational costs and...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 04., Seite 7317-7332
1. Verfasser: Wang, Mou (VerfasserIn)
Weitere Verfasser: Wei, Shunjun, Liang, Jiadian, Zhou, Zichen, Qu, Qizhe, Shi, Jun, Zhang, Xiaoling
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM329592343
003 DE-627
005 20231225205440.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3104168  |2 doi 
028 5 2 |a pubmed24n1098.xml 
035 |a (DE-627)NLM329592343 
035 |a (NLM)34415832 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Mou  |e verfasserin  |4 aut 
245 1 0 |a TPSSI-Net  |b Fast and Enhanced Two-Path Iterative Network for 3D SAR Sparse Imaging 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 23.08.2021 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The emerging field of combining compressed sensing (CS) and three-dimensional synthetic aperture radar (3D SAR) imaging has shown significant potential to reduce sampling rate and improve image quality. However, the conventional CS-driven algorithms are always limited by huge computational costs and non-trivial tuning of parameters. In this article, to address this problem, we propose a two-path iterative framework dubbed TPSSI-Net for 3D SAR sparse imaging. By mapping the AMP into a layer-fixed deep neural network, each layer of TPSSI-Net consists of four modules in cascade corresponding to four steps of the AMP optimization. Differently, the Onsager terms in TPSSI-Net are modified to be differentiable and scaled by learnable coefficients. Rather than manually choosing a sparsifying basis, a two-path convolutional neural network (CNN) is developed and embedded in TPSSI-Net for nonlinear sparse representation in the complex-valued domain. All parameters are layer-varied and optimized by end-to-end training based on a channel-wise loss function, bounding both symmetry constraint and measurement fidelity. Finally, extensive SAR imaging experiments, including simulations and real-measured tests, demonstrate the effectiveness and high efficiency of the proposed TPSSI-Net 
650 4 |a Journal Article 
700 1 |a Wei, Shunjun  |e verfasserin  |4 aut 
700 1 |a Liang, Jiadian  |e verfasserin  |4 aut 
700 1 |a Zhou, Zichen  |e verfasserin  |4 aut 
700 1 |a Qu, Qizhe  |e verfasserin  |4 aut 
700 1 |a Shi, Jun  |e verfasserin  |4 aut 
700 1 |a Zhang, Xiaoling  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 04., Seite 7317-7332  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:04  |g pages:7317-7332 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3104168  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 04  |h 7317-7332