Demand gap analysis of municipal solid waste landfill in Beijing : Based on the municipal solid waste generation

Copyright © 2021 Elsevier Ltd. All rights reserved.

Détails bibliographiques
Publié dans:Waste management (New York, N.Y.). - 1999. - 134(2021) vom: 01. Okt., Seite 42-51
Auteur principal: Liu, Bingchun (Auteur)
Autres auteurs: Zhang, Lei, Wang, Qingshan
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:Waste management (New York, N.Y.)
Sujets:Journal Article Long Short Term Memory (LSTM) Municipal solid waste generation Municipal solid waste landfill Sustainable development Solid Waste
LEADER 01000caa a22002652c 4500
001 NLM329509934
003 DE-627
005 20250302091817.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.wasman.2021.08.007  |2 doi 
028 5 2 |a pubmed25n1098.xml 
035 |a (DE-627)NLM329509934 
035 |a (NLM)34407482 
035 |a (PII)S0956-053X(21)00432-3 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Bingchun  |e verfasserin  |4 aut 
245 1 0 |a Demand gap analysis of municipal solid waste landfill in Beijing  |b Based on the municipal solid waste generation 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.09.2021 
500 |a Date Revised 07.09.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2021 Elsevier Ltd. All rights reserved. 
520 |a Achieving accurate prediction of the Municipal Solid Waste (MSW) generation is essential for the sustainable development of the city. This paper selects Beijing as the research object, building a neural network model based on Grey Relational Analysis and Long and Short-Term Memory (GRA-LSTM), and choosing 14 influencing factors of MSW generation as the input indicators, to realize the effective prediction of MSW generation. Then this study obtains the landfill area in Beijing by using the aforementioned prediction results and the calculation formula of the landfill. Firstly, the GRA method is used to sort the influencing factors of the MSW generation for obtain the key influencing indexes. Secondly, the LSTM model is used to learn features of the key influencing indexes. Finally, the area of Beijing landfill is estimated by the calculation formula of landfill area. The results show that, first of all, the MAPE value of the GRA-LSTM combined model established in this paper is 7.3, and the prediction performance of this model is better than the other seven structural methods. Secondly, the area demand for landfills in Beijing shows an upward trend. At last, this paper put forward relevant suggestions to achieve sustainable urban development and deal with the increase in the MSW generation and the demand for landfills 
650 4 |a Journal Article 
650 4 |a Long Short Term Memory (LSTM) 
650 4 |a Municipal solid waste generation 
650 4 |a Municipal solid waste landfill 
650 4 |a Sustainable development 
650 7 |a Solid Waste  |2 NLM 
700 1 |a Zhang, Lei  |e verfasserin  |4 aut 
700 1 |a Wang, Qingshan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Waste management (New York, N.Y.)  |d 1999  |g 134(2021) vom: 01. Okt., Seite 42-51  |w (DE-627)NLM098197061  |x 1879-2456  |7 nnas 
773 1 8 |g volume:134  |g year:2021  |g day:01  |g month:10  |g pages:42-51 
856 4 0 |u http://dx.doi.org/10.1016/j.wasman.2021.08.007  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 134  |j 2021  |b 01  |c 10  |h 42-51