Widar3.0 : Zero-Effort Cross-Domain Gesture Recognition With Wi-Fi

With the development of signal processing technology, the ubiquitous Wi-Fi devices open an unprecedented opportunity to solve the challenging human gesture recognition problem by learning motion representations from wireless signals. Wi-Fi-based gesture recognition systems, although yield good perfo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 11 vom: 04. Nov., Seite 8671-8688
1. Verfasser: Zhang, Yi (VerfasserIn)
Weitere Verfasser: Zheng, Yue, Qian, Kun, Zhang, Guidong, Liu, Yunhao, Wu, Chenshu, Yang, Zheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM329504584
003 DE-627
005 20231225205248.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3105387  |2 doi 
028 5 2 |a pubmed24n1098.xml 
035 |a (DE-627)NLM329504584 
035 |a (NLM)34406937 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Yi  |e verfasserin  |4 aut 
245 1 0 |a Widar3.0  |b Zero-Effort Cross-Domain Gesture Recognition With Wi-Fi 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.10.2022 
500 |a Date Revised 19.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a With the development of signal processing technology, the ubiquitous Wi-Fi devices open an unprecedented opportunity to solve the challenging human gesture recognition problem by learning motion representations from wireless signals. Wi-Fi-based gesture recognition systems, although yield good performance on specific data domains, are still practically difficult to be used without explicit adaptation efforts to new domains. Various pioneering approaches have been proposed to resolve this contradiction but extra training efforts are still necessary for either data collection or model re-training when new data domains appear. To advance cross-domain recognition and achieve fully zero-effort recognition, we propose Widar3.0, a Wi-Fi-based zero-effort cross-domain gesture recognition system. The key insight of Widar3.0 is to derive and extract domain-independent features of human gestures at the lower signal level, which represent unique kinetic characteristics of gestures and are irrespective of domains. On this basis, we develop a one-fits-all general model that requires only one-time training but can adapt to different data domains. Experiments on various domain factors (i.e. environments, locations, and orientations of persons) demonstrate the accuracy of 92.7% for in-domain recognition and 82.6%-92.4% for cross-domain recognition without model re-training, outperforming the state-of-the-art solutions 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zheng, Yue  |e verfasserin  |4 aut 
700 1 |a Qian, Kun  |e verfasserin  |4 aut 
700 1 |a Zhang, Guidong  |e verfasserin  |4 aut 
700 1 |a Liu, Yunhao  |e verfasserin  |4 aut 
700 1 |a Wu, Chenshu  |e verfasserin  |4 aut 
700 1 |a Yang, Zheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 11 vom: 04. Nov., Seite 8671-8688  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:11  |g day:04  |g month:11  |g pages:8671-8688 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3105387  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 11  |b 04  |c 11  |h 8671-8688