Survey and Evaluation of Neural 3D Shape Classification Approaches

Classification of 3D objects - the selection of a category in which each object belongs - is of great interest in the field of machine learning. Numerous researchers use deep neural networks to address this problem, altering the network architecture and representation of the 3D shape used as an inpu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 11 vom: 04. Nov., Seite 8635-8656
1. Verfasser: Mirbauer, Martin (VerfasserIn)
Weitere Verfasser: Krabec, Miroslav, Krivanek, Jaroslav, Sikudova, Elena
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM329504576
003 DE-627
005 20231225205248.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3102676  |2 doi 
028 5 2 |a pubmed24n1098.xml 
035 |a (DE-627)NLM329504576 
035 |a (NLM)34406936 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mirbauer, Martin  |e verfasserin  |4 aut 
245 1 0 |a Survey and Evaluation of Neural 3D Shape Classification Approaches 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.10.2022 
500 |a Date Revised 19.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Classification of 3D objects - the selection of a category in which each object belongs - is of great interest in the field of machine learning. Numerous researchers use deep neural networks to address this problem, altering the network architecture and representation of the 3D shape used as an input. To investigate the effectiveness of their approaches, we conduct an extensive survey of existing methods and identify common ideas by which we categorize them into a taxonomy. Second, we evaluate 11 selected classification networks on two 3D object datasets, extending the evaluation to a larger dataset on which most of the selected approaches have not been tested yet. For this, we provide a framework for converting shapes from common 3D mesh formats into formats native to each network, and for training and evaluating different classification approaches on this data. Despite being partially unable to reach the accuracies reported in the original papers, we compare the relative performance of the approaches as well as their performance when changing datasets as the only variable to provide valuable insights into performance on different kinds of data. We make our code available to simplify running training experiments with multiple neural networks with different prerequisites 
650 4 |a Journal Article 
700 1 |a Krabec, Miroslav  |e verfasserin  |4 aut 
700 1 |a Krivanek, Jaroslav  |e verfasserin  |4 aut 
700 1 |a Sikudova, Elena  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 11 vom: 04. Nov., Seite 8635-8656  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:11  |g day:04  |g month:11  |g pages:8635-8656 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3102676  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 11  |b 04  |c 11  |h 8635-8656