Stomata and ROS changes during Botrytis elliptica infection in diploid and tetraploid Lilium rosthornii Diels

Copyright © 2021 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 167(2021) vom: 30. Okt., Seite 366-375
1. Verfasser: Wang, Lian-Juan (VerfasserIn)
Weitere Verfasser: Gao, Xue, Jia, Gui-Xia
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Grey mould L. rosthornii Polyploidization ROS Stomata Reactive Oxygen Species
LEADER 01000naa a22002652 4500
001 NLM329475916
003 DE-627
005 20231225205212.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.plaphy.2021.08.008  |2 doi 
028 5 2 |a pubmed24n1098.xml 
035 |a (DE-627)NLM329475916 
035 |a (NLM)34404007 
035 |a (PII)S0981-9428(21)00417-4 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Lian-Juan  |e verfasserin  |4 aut 
245 1 0 |a Stomata and ROS changes during Botrytis elliptica infection in diploid and tetraploid Lilium rosthornii Diels 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.10.2021 
500 |a Date Revised 13.10.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2021 Elsevier Masson SAS. All rights reserved. 
520 |a Polyploid plants often show improved resistance against many diseases, but whether they show increased resistance to grey mould, a devastating disease caused by Botrytis spp. fungi, is seldom reported. Stomata and reactive oxygen species (ROS) play dual roles in defence against grey mould, and it is unclear how their roles change after polyploidization. We addressed these questions in diploid and colchicine-induced Lilium rosthornii after B. elliptica infection. Tetraploids were less susceptible to grey mould, with lower morality rates in naturally infected plants. Before the stomata closed in artificially infected leaves, tetraploids, with larger stomatal apertures, were more easily invaded by the pathogen than diploids. However, the lesion area increased more slowly in tetraploids than in diploids, which may be explained by three causes based on histological and physiological characteristics. First, the pathogen required more time to penetrate the epidermis and closed stomata in tetraploids than in diploids. Second, the pathogen penetrated the reopened stomata more easily than the epidermis, and stomatal density was lower in tetraploids than in diploids. Third, tetraploids showed faster ROS accumulation, a more effective ROS-scavenging system and less malondialdehyde (MDA) accumulation than diploids. Stomatal starch and abnormal guard cell nuclei were present in the infected leaves. This phenomenon may be caused by oxalic acid, a pathogenic factor for many pathogens that promotes stomatal starch degradation and stomatal reopening in Sclerotinia spp., a pathogen closely related to Botrytis spp. This suggestion was primarily confirmed by immersing healthy leaves in oxalic acid solution 
650 4 |a Journal Article 
650 4 |a Grey mould 
650 4 |a L. rosthornii 
650 4 |a Polyploidization 
650 4 |a ROS 
650 4 |a Stomata 
650 7 |a Reactive Oxygen Species  |2 NLM 
700 1 |a Gao, Xue  |e verfasserin  |4 aut 
700 1 |a Jia, Gui-Xia  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant physiology and biochemistry : PPB  |d 1991  |g 167(2021) vom: 30. Okt., Seite 366-375  |w (DE-627)NLM098178261  |x 1873-2690  |7 nnns 
773 1 8 |g volume:167  |g year:2021  |g day:30  |g month:10  |g pages:366-375 
856 4 0 |u http://dx.doi.org/10.1016/j.plaphy.2021.08.008  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 167  |j 2021  |b 30  |c 10  |h 366-375