Rotation Awareness Based Self-Supervised Learning for SAR Target Recognition With Limited Training Samples

The scattering signatures of a synthetic aperture radar (SAR) target image will be highly sensitive to different azimuth angles/poses, which aggravates the demand for training samples in learning-based SAR image automatic target recognition (ATR) algorithms, and makes SAR ATR a more challenging task...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 17., Seite 7266-7279
1. Verfasser: Wen, Zaidao (VerfasserIn)
Weitere Verfasser: Liu, Zhunga, Zhang, Shuai, Pan, Quan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM329469304
003 DE-627
005 20231225205204.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3104179  |2 doi 
028 5 2 |a pubmed24n1098.xml 
035 |a (DE-627)NLM329469304 
035 |a (NLM)34403341 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wen, Zaidao  |e verfasserin  |4 aut 
245 1 0 |a Rotation Awareness Based Self-Supervised Learning for SAR Target Recognition With Limited Training Samples 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.12.2021 
500 |a Date Revised 14.12.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a The scattering signatures of a synthetic aperture radar (SAR) target image will be highly sensitive to different azimuth angles/poses, which aggravates the demand for training samples in learning-based SAR image automatic target recognition (ATR) algorithms, and makes SAR ATR a more challenging task. This paper develops a novel rotation awareness-based learning framework termed RotANet for SAR ATR under the condition of limited training samples. First, we propose an encoding scheme to characterize the rotational pattern of pose variations among intra-class targets. These targets will constitute several ordered sequences with different rotational patterns via permutations. By further exploiting the intrinsic relation constraints among these sequences as the supervision, we develop a novel self-supervised task which makes RotANet learn to predict the rotational pattern of a baseline sequence and then autonomously generalize this ability to the others without external supervision. Therefore, this task essentially contains a learning and self-validation process to achieve human-like rotation awareness, and it serves as a task-induced prior to regularize the learned feature domain of RotANet in conjunction with an individual target recognition task to improve the generalization ability of the features. Extensive experiments on moving and stationary target acquisition and recognition benchmark database demonstrate the effectiveness of our proposed framework. Compared with other state-of-the-art SAR ATR algorithms, RotANet will remarkably improve the recognition accuracy especially in the case of very limited training samples without performing any other data augmentation strategy 
650 4 |a Journal Article 
700 1 |a Liu, Zhunga  |e verfasserin  |4 aut 
700 1 |a Zhang, Shuai  |e verfasserin  |4 aut 
700 1 |a Pan, Quan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 17., Seite 7266-7279  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:17  |g pages:7266-7279 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3104179  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 17  |h 7266-7279