Deep Dense Multi-Scale Network for Snow Removal Using Semantic and Depth Priors

Images captured in snowy days suffer from noticeable degradation of scene visibility, which degenerates the performance of current vision-based intelligent systems. Removing snow from images thus is an important topic in computer vision. In this paper, we propose a Deep Dense Multi-Scale Network (DD...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 17., Seite 7419-7431
1. Verfasser: Zhang, Kaihao (VerfasserIn)
Weitere Verfasser: Li, Rongqing, Yu, Yanjiang, Luo, Wenhan, Li, Changsheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM329469274
003 DE-627
005 20231225205204.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3104166  |2 doi 
028 5 2 |a pubmed24n1098.xml 
035 |a (DE-627)NLM329469274 
035 |a (NLM)34403338 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Kaihao  |e verfasserin  |4 aut 
245 1 0 |a Deep Dense Multi-Scale Network for Snow Removal Using Semantic and Depth Priors 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 31.08.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Images captured in snowy days suffer from noticeable degradation of scene visibility, which degenerates the performance of current vision-based intelligent systems. Removing snow from images thus is an important topic in computer vision. In this paper, we propose a Deep Dense Multi-Scale Network (DDMSNet) for snow removal by exploiting semantic and depth priors. As images captured in outdoor often share similar scenes and their visibility varies with depth from camera, such semantic and depth information provides a strong prior for snowy image restoration. We incorporate the semantic and depth maps as input and learn the semantic-aware and geometry-aware representation to remove snow. In particular, we first create a coarse network to remove snow from the input images. Then, the coarsely desnowed images are fed into another network to obtain the semantic and depth labels. Finally, we design a DDMSNet to learn semantic-aware and geometry-aware representation via a self-attention mechanism to produce the final clean images. Experiments evaluated on public synthetic and real-world snowy images verify the superiority of the proposed method, offering better results both quantitatively and qualitatively. https://github.com/HDCVLab/Deep-Dense-Multi-scale-Network https://github.com/HDCVLab/Deep-Dense-Multi-scale-Network 
650 4 |a Journal Article 
700 1 |a Li, Rongqing  |e verfasserin  |4 aut 
700 1 |a Yu, Yanjiang  |e verfasserin  |4 aut 
700 1 |a Luo, Wenhan  |e verfasserin  |4 aut 
700 1 |a Li, Changsheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 17., Seite 7419-7431  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:17  |g pages:7419-7431 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3104166  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 17  |h 7419-7431