The C4 cycle and beyond : diverse metabolic adaptations accompany dual-cell photosynthetic functions in Setaria

© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Détails bibliographiques
Publié dans:Journal of experimental botany. - 1985. - 72(2021), 22 vom: 04. Dez., Seite 7876-7890
Auteur principal: Calace, Paula (Auteur)
Autres auteurs: Tonetti, Tomás, Margarit, Ezequiel, Figueroa, Carlos M, Lobertti, Carlos, Andreo, Carlos S, Gerrard Wheeler, Mariel C, Saigo, Mariana
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:Journal of experimental botany
Sujets:Journal Article Research Support, Non-U.S. Gov't C4 photosynthesis Setaria grasses maize malic enzyme metabolism proteomic Malate Dehydrogenase EC 1.1.1.37
Description
Résumé:© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
C4 photosynthesis is typically characterized by the spatial compartmentalization of the photosynthetic reactions into mesophyll (M) and bundle sheath (BS) cells. Initial carbon fixation within M cells gives rise to C4 acids, which are transported to the BS cells. There, C4 acids are decarboxylated so that the resulting CO2 is incorporated into the Calvin cycle. This work is focused on the study of Setaria viridis, a C4 model plant, closely related to several major feed and bioenergy grasses. First, we performed the heterologous expression and biochemical characterization of Setaria isoforms for chloroplastic NADP-malic enzyme (NADP-ME) and mitochondrial NAD-malic enzyme (NAD-ME). The kinetic parameters obtained agree with a major role for NADP-ME in the decarboxylation of the C4 acid malate in the chloroplasts of BS cells. In addition, mitochondria-located NAD-ME showed regulatory properties that could be important in the context of the operation of the C4 carbon shuttle. Secondly, we compared the proteomes of M and BS compartments and found 825 differentially accumulated proteins that could support different metabolic scenarios. Most interestingly, we found evidence of metabolic strategies to insulate the C4 core avoiding the leakage of intermediates by either up-regulation or down-regulation of chloroplastic, mitochondrial, and peroxisomal proteins. Overall, the results presented in this work provide novel data concerning the complexity of C4 metabolism, uncovering future lines of research that will undoubtedly contribute to the expansion of knowledge on this topic
Description:Date Completed 30.12.2021
Date Revised 30.12.2021
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erab381