Pseudopotentials for coarse-grained cross-link-assisted modeling of protein structures
© 2021 Wiley Periodicals LLC.
Veröffentlicht in: | Journal of computational chemistry. - 1984. - 42(2021), 29 vom: 05. Nov., Seite 2054-2067 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | Journal of computational chemistry |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't chemical cross-link mass spectroscopy coarse-grained modeling molecular dynamics potentials of mean force Proteins |
Zusammenfassung: | © 2021 Wiley Periodicals LLC. Pseudopotentials for the chemical cross-links comprising the glutamic- and aspartic-acid side chains bridged with adipic- (ADH) or pimelic-acid hydrazide (PDH), and the lysine side chains bridged with glutaric (BS2 G) or suberic acid (BS3 ) for coarse-grained cross-link-assisted simulations were determined by canonical molecular dynamics with the Amber14sb force field. The potentials depend on the distance between side-chain ends and on side-chain orientation, this preventing from making cross-link contacts across the globule in simulations. The potentials were implemented in the UNRES coarse-grained force field and their effect on the quality of models was assessed with 11 monomeric and 1 dimeric proteins, using synthetic or experimental cross-link data. Simulations with the new potentials resulted in improvement of the generated models compared to unrestrained simulations in more instances compared to those with the statistical potentials |
---|---|
Beschreibung: | Date Completed 31.01.2022 Date Revised 31.01.2022 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1096-987X |
DOI: | 10.1002/jcc.26736 |