Fused-Silica 3D Chiral Metamaterials via Helium-Assisted Microcasting Supporting Topologically Protected Twist Edge Resonances with High Mechanical Quality Factors

© 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 40 vom: 24. Okt., Seite e2103205
1. Verfasser: Köpfler, Julian (VerfasserIn)
Weitere Verfasser: Frenzel, Tobias, Schmalian, Jörg, Wegener, Martin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 3D chiral mechanical metamaterials fused silica multiphoton 3D printing topological bandgaps topologically protected elastic modes
LEADER 01000caa a22002652 4500
001 NLM329421328
003 DE-627
005 20241013231821.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202103205  |2 doi 
028 5 2 |a pubmed24n1566.xml 
035 |a (DE-627)NLM329421328 
035 |a (NLM)34398466 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Köpfler, Julian  |e verfasserin  |4 aut 
245 1 0 |a Fused-Silica 3D Chiral Metamaterials via Helium-Assisted Microcasting Supporting Topologically Protected Twist Edge Resonances with High Mechanical Quality Factors 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 13.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH. 
520 |a It is predicted theoretically that a 1D diatomic chain of 3D chiral cells can support a topological bandgap that allows for translating a small time-harmonic axial movement at one end of the chain into a resonantly enhanced large rotation of an edge state at the other end. This edge state is topologically protected such that an arbitrary mass of a mirror at the other end does not shift the eigenfrequency out of the bandgap. Herein, this complex 3D laser-beam-scanner microstructure is realized in fused-silica form. A novel microcasting approach is introduced that starts from a hollow polymer cast made by standard 3D laser nanoprinting. The cast is evacuated and filled with helium, such that a highly viscous commercial glass slurry is sucked in. After UV curing and thermal debinding of the polymer, the fused-silica glass is sintered at 1225 °C under vacuum. Detailed optical measurements reveal a mechanical quality factor of the twist-edge resonance of 2850 at around 278 kHz resonance frequency under ambient conditions. The microcasting approach can likely be translated to many other glasses, to metals and ceramics, and to complex architectures that are not or not yet amenable to direct 3D laser printing 
650 4 |a Journal Article 
650 4 |a 3D chiral mechanical metamaterials 
650 4 |a fused silica 
650 4 |a multiphoton 3D printing 
650 4 |a topological bandgaps 
650 4 |a topologically protected elastic modes 
700 1 |a Frenzel, Tobias  |e verfasserin  |4 aut 
700 1 |a Schmalian, Jörg  |e verfasserin  |4 aut 
700 1 |a Wegener, Martin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 33(2021), 40 vom: 24. Okt., Seite e2103205  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:33  |g year:2021  |g number:40  |g day:24  |g month:10  |g pages:e2103205 
856 4 0 |u http://dx.doi.org/10.1002/adma.202103205  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2021  |e 40  |b 24  |c 10  |h e2103205