Source Data-Absent Unsupervised Domain Adaptation Through Hypothesis Transfer and Labeling Transfer

Unsupervised domain adaptation (UDA) aims to transfer knowledge from a related but different well-labeled source domain to a new unlabeled target domain. Most existing UDA methods require access to the source data, and thus are not applicable when the data are confidential and not shareable due to p...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 11 vom: 24. Nov., Seite 8602-8617
1. Verfasser: Liang, Jian (VerfasserIn)
Weitere Verfasser: Hu, Dapeng, Wang, Yunbo, He, Ran, Feng, Jiashi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM329274864
003 DE-627
005 20231225204748.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3103390  |2 doi 
028 5 2 |a pubmed24n1097.xml 
035 |a (DE-627)NLM329274864 
035 |a (NLM)34383644 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liang, Jian  |e verfasserin  |4 aut 
245 1 0 |a Source Data-Absent Unsupervised Domain Adaptation Through Hypothesis Transfer and Labeling Transfer 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.10.2022 
500 |a Date Revised 19.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Unsupervised domain adaptation (UDA) aims to transfer knowledge from a related but different well-labeled source domain to a new unlabeled target domain. Most existing UDA methods require access to the source data, and thus are not applicable when the data are confidential and not shareable due to privacy concerns. This paper aims to tackle a realistic setting with only a classification model available trained over, instead of accessing to, the source data. To effectively utilize the source model for adaptation, we propose a novel approach called Source HypOthesis Transfer (SHOT), which learns the feature extraction module for the target domain by fitting the target data features to the frozen source classification module (representing classification hypothesis). Specifically, SHOT exploits both information maximization and self-supervised learning for the feature extraction module learning to ensure the target features are implicitly aligned with the features of unseen source data via the same hypothesis. Furthermore, we propose a new labeling transfer strategy, which separates the target data into two splits based on the confidence of predictions (labeling information), and then employ semi-supervised learning to improve the accuracy of less-confident predictions in the target domain. We denote labeling transfer as SHOT++ if the predictions are obtained by SHOT. Extensive experiments on both digit classification and object recognition tasks show that SHOT and SHOT++ achieve results surpassing or comparable to the state-of-the-arts, demonstrating the effectiveness of our approaches for various visual domain adaptation problems. Code will be available at https://github.com/tim-learn/SHOT-plus 
650 4 |a Journal Article 
700 1 |a Hu, Dapeng  |e verfasserin  |4 aut 
700 1 |a Wang, Yunbo  |e verfasserin  |4 aut 
700 1 |a He, Ran  |e verfasserin  |4 aut 
700 1 |a Feng, Jiashi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 11 vom: 24. Nov., Seite 8602-8617  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:11  |g day:24  |g month:11  |g pages:8602-8617 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3103390  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 11  |b 24  |c 11  |h 8602-8617