Enhanced Evaporation of Ultrathin Water Films on Silicon-Terminated Si3N4 Nanopore Membranes

Water evaporation confined in nanoscale is a ubiquitous phenomenon in nature and has crucial importance in a broad range of technical applications. With the nonequilibrium molecular dynamics simulation, we elucidate nanothin water film evaporation characteristics on a silicon nitride nanopore membra...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 33 vom: 24. Aug., Seite 10046-10051
1. Verfasser: Liu, Runkeng (VerfasserIn)
Weitere Verfasser: Liu, Zhenyu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM329273345
003 DE-627
005 20231225204746.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.1c01212  |2 doi 
028 5 2 |a pubmed24n1097.xml 
035 |a (DE-627)NLM329273345 
035 |a (NLM)34383493 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Runkeng  |e verfasserin  |4 aut 
245 1 0 |a Enhanced Evaporation of Ultrathin Water Films on Silicon-Terminated Si3N4 Nanopore Membranes 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 24.08.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Water evaporation confined in nanoscale is a ubiquitous phenomenon in nature and has crucial importance in a broad range of technical applications. With the nonequilibrium molecular dynamics simulation, we elucidate nanothin water film evaporation characteristics on a silicon nitride nanopore membrane considering the effects of pore size and pore chemistry. Pore chemistry plays the main role in regulating the evaporation flux. The terminated Si atoms on the pore surface lead to a higher evaporation intensity than the N ones. We attribute this enhancement to the transition of the structural properties of fluid, where liquid molecules are packed loosely and disorderedly under the inducement of terminated silicon atoms. The findings in the present work can contribute to the fundamental understanding of the nanopore-enhanced evaporation process and provide new guidance to the design of advanced nanopore membrane materials 
650 4 |a Journal Article 
700 1 |a Liu, Zhenyu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 37(2021), 33 vom: 24. Aug., Seite 10046-10051  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:37  |g year:2021  |g number:33  |g day:24  |g month:08  |g pages:10046-10051 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.1c01212  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 37  |j 2021  |e 33  |b 24  |c 08  |h 10046-10051