Dual-Crosslinked Dynamic Hydrogel Incorporating {Mo154 } with pH and NIR Responsiveness for Chemo-Photothermal Therapy
© 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 40 vom: 24. Okt., Seite e2007761 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article NIR-responsive chemo-photothermal therapy injectable hydrogel pH-responsive {Mo154} Drug Carriers Hydrogels Polyethylene Glycols 3WJQ0SDW1A mehr... |
Zusammenfassung: | © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH. Polyoxometalates are an emerging class of molecular clusters, with well-defined structures and chemical compositions that are produced through simple, low-cost, and highly reproducible methods. In particular, the wheel-shaped cluster {Mo154 } is a promising photothermal agent due to its intervalence charge transfer transitions. However, its toxicity hinders its systemic administration, being the development of a localized delivery system still incipient. Herein, an injectable and self-healing hydrogel of easy preparation and administration is developed, incorporating both {Mo154 } and doxorubicin for synergistic photothermal and chemotherapy applications. The hydrogel is composed of benzylaldehyde functionalized polyethylene glycol, poly(N-isopropylacrylamide) functionalized chitosan and {Mo154 }. The gelation occurs within 60 s at room temperature, and the dual crosslinking by Schiff base and electrostatic interactions generates a dynamic network, which enables self-healing after injection. Moreover, the hydrogel delivers chemotherapeutic drugs, with a release triggered by dual near infra-red (NIR) radiation and pH changes. This stimuli-responsive release system along with the photothermal conversion ability of the hydrogel allows the simultaneous combination of photothermal and chemotherapy. This synergic system efficiently ablates the cancer tumor in vivo with no systemic toxicity. Overall, this work paves the way for the development of novel {Mo154 }-based systems, incorporated in self-healing and injectable hydrogels for dual chemo-photothermal therapy |
---|---|
Beschreibung: | Date Completed 26.01.2022 Date Revised 13.10.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202007761 |