Dynamic changes in cell wall composition of mature sunflower leaves under distinct water regimes affect photosynthesis

© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 72(2021), 22 vom: 04. Dez., Seite 7863-7875
1. Verfasser: Roig-Oliver, Margalida (VerfasserIn)
Weitere Verfasser: Bresta, Panagiota, Nikolopoulos, Dimosthenis, Bota, Josefina, Flexas, Jaume
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Helianthus annuus Cell wall composition lignins mesophyll conductance to CO2 diffusion pectins photosynthesis recovery stomatal conductance to gas diffusion mehr... water deficit stress Water 059QF0KO0R Carbon Dioxide 142M471B3J
Beschreibung
Zusammenfassung:© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
In previous work, we identified that exposure to limited water availability induced changes in cell wall composition of mature Helianthus annuus L. leaves that affected mesophyll conductance to CO2 diffusion (gm). However, it is unclear on which timescale these changes in cell wall composition occurred. Here, we subjected H. annuus to control (i.e. water availability), different levels of short-term water deficit stress (ST), long-term water deficit stress (LT), and long-term water deficit stress followed by gradual recoveries addressed at different timescales (LT-Rec) to evaluate the dynamics of modifications in the main composition of cell wall (cellulose, hemicelluloses, pectins and lignins) affecting photosynthesis. During gradual ST treatments, pectins enhancement was associated with gm decline. However, during LT-Rec, pectins content decreased significantly after only 5 h, while hemicelluloses and lignins amounts changed after 24 h, all being uncoupled from gm. Surprisingly, lignins increased by around 200% compared with control and were related to stomatal conductance to gas diffusion (gs) during LT-Rec. Although we suspect that the accuracy of the protocols to determine cell wall composition should be re-evaluated, we demonstrate for the first time that a highly dynamic cell wall composition turnover differently affects photosynthesis in plants subjected to distinct water regimes
Beschreibung:Date Completed 30.12.2021
Date Revised 30.12.2021
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erab372