GPCA : A Probabilistic Framework for Gaussian Process Embedded Channel Attention

Channel attention mechanisms have been commonly applied in many visual tasks for effective performance improvement. It is able to reinforce the informative channels as well as to suppress the useless channels. Recently, different channel attention modules have been proposed and implemented in variou...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 11 vom: 01. Nov., Seite 8230-8248
1. Verfasser: Xie, Jiyang (VerfasserIn)
Weitere Verfasser: Ma, Zhanyu, Chang, Dongliang, Zhang, Guoqiang, Guo, Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM329192973
003 DE-627
005 20231225204602.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3102955  |2 doi 
028 5 2 |a pubmed24n1097.xml 
035 |a (DE-627)NLM329192973 
035 |a (NLM)34375278 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xie, Jiyang  |e verfasserin  |4 aut 
245 1 0 |a GPCA  |b A Probabilistic Framework for Gaussian Process Embedded Channel Attention 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.10.2022 
500 |a Date Revised 19.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Channel attention mechanisms have been commonly applied in many visual tasks for effective performance improvement. It is able to reinforce the informative channels as well as to suppress the useless channels. Recently, different channel attention modules have been proposed and implemented in various ways. Generally speaking, they are mainly based on convolution and pooling operations. In this paper, we propose Gaussian process embedded channel attention (GPCA) module and further interpret the channel attention schemes in a probabilistic way. The GPCA module intends to model the correlations among the channels, which are assumed to be captured by beta distributed variables. As the beta distribution cannot be integrated into the end-to-end training of convolutional neural networks (CNNs) with a mathematically tractable solution, we utilize an approximation of the beta distribution to solve this problem. To specify, we adapt a Sigmoid-Gaussian approximation, in which the Gaussian distributed variables are transferred into the interval [0,1]. The Gaussian process is then utilized to model the correlations among different channels. In this case, a mathematically tractable solution is derived. The GPCA module can be efficiently implemented and integrated into the end-to-end training of the CNNs. Experimental results demonstrate the promising performance of the proposed GPCA module. Codes are available at https://github.com/PRIS-CV/GPCA 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Ma, Zhanyu  |e verfasserin  |4 aut 
700 1 |a Chang, Dongliang  |e verfasserin  |4 aut 
700 1 |a Zhang, Guoqiang  |e verfasserin  |4 aut 
700 1 |a Guo, Jun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 11 vom: 01. Nov., Seite 8230-8248  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:11  |g day:01  |g month:11  |g pages:8230-8248 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3102955  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 11  |b 01  |c 11  |h 8230-8248