|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM329146181 |
003 |
DE-627 |
005 |
20231225204458.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.1c01647
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1097.xml
|
035 |
|
|
|a (DE-627)NLM329146181
|
035 |
|
|
|a (NLM)34370488
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chen, Lihua
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Dual-Functional Graphene Oxide-Based Photothermal Materials with Aligned Channels and Oleophobicity for Efficient Solar Steam Generation
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 24.08.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Desalination by solar steam generation (SSG) has emerged as one of the most efficient approaches to address the issue of global water shortage. In this work, novel graphene oxide (GO)-based solar steam generators (GO-SSGs) with aligned channels were prepared by directional freezing and simple carbonization of a hydrogel composed of GO and poly(vinyl alcohol) (PVA). Benefitting from their excellent light absorption (light absorption efficiency exceeds 94%), better thermal insulation (thermal conductivity, 0.259 W/(m K)), and suitable porous structure, which facilitates rapid water transportation, the GO-SSGs show superior SSG performance with a high solar energy conversion efficiency of up to 92% achieved under an irradiation of 1.0 kW/m2. Interestingly, uniquely aligned channels endow them with good salt-rejection performance; the solar energy conversion efficiency of GO-SSGs in 20 wt % NaCl, KCl, and MgCl2 brine can reach more than 85%. To improve their antifouling performance, a chemically hydrophilic and oleophobic modification was conducted, making it possible to run SSG even in oily wastewater; for instance, a solar energy conversion efficiency of 84% was obtained in an aqueous solution containing 10 wt % n-hexadecane. Compared with the existing photothermal materials, these materials show advantages of simple manufacture, high SSG efficiency, superior salt tolerance, and antifouling performance, which make them promising candidates as a kind of new high-performance photothermal materials for desalination even in oily wastewater, thus further expanding the scope of their practical SSG application
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Wei, Jing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tian, Qi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Han, Zhichao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Li
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Meng, Shujuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hasi, Qi-Meige
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 37(2021), 33 vom: 24. Aug., Seite 10191-10199
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:37
|g year:2021
|g number:33
|g day:24
|g month:08
|g pages:10191-10199
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.1c01647
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 37
|j 2021
|e 33
|b 24
|c 08
|h 10191-10199
|