Evolving convolutional neural network parameters through the genetic algorithm for the breast cancer classification problem

© The Author(s) 2021.

Bibliographische Detailangaben
Veröffentlicht in:Simulation. - 1970. - 97(2021), 8 vom: 10. Aug., Seite 511-527
1. Verfasser: Davoudi, Khatereh (VerfasserIn)
Weitere Verfasser: Thulasiraman, Parimala
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Simulation
Schlagworte:Journal Article Evolutionary machine learning back-propagation breast cancer computer-aided diagnosis systems convolutional neural network deep learning genetic algorithm
LEADER 01000caa a22002652c 4500
001 NLM329106457
003 DE-627
005 20250302082143.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1177/0037549721996031  |2 doi 
028 5 2 |a pubmed25n1096.xml 
035 |a (DE-627)NLM329106457 
035 |a (NLM)34366489 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Davoudi, Khatereh  |e verfasserin  |4 aut 
245 1 0 |a Evolving convolutional neural network parameters through the genetic algorithm for the breast cancer classification problem 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 10.08.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © The Author(s) 2021. 
520 |a Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer mortality in women around the world. However, it can be controlled effectively by early diagnosis, followed by effective treatment. Clinical specialists take the advantages of computer-aided diagnosis (CAD) systems to make their diagnosis as accurate as possible. Deep learning techniques, such as the convolutional neural network (CNN), due to their classification capabilities on learned feature methods and ability of working with complex images, have been widely adopted in CAD systems. The parameters of the network, including the weights of the convolution filters and the weights of the fully connected layers, play a crucial role in the classification accuracy of any CNN model. The back-propagation technique is the most frequently used approach for training the CNN. However, this technique has some disadvantages, such as getting stuck in local minima. In this study, we propose to optimize the weights of the CNN using the genetic algorithm (GA). The work consists of designing a CNN model to facilitate the classification process, training the model using three different optimizers (mini-batch gradient descent, Adam, and GA), and evaluating the model through various experiments on the BreakHis dataset. We show that the CNN model trained through the GA performs as well as the Adam optimizer with a classification accuracy of 85% 
650 4 |a Journal Article 
650 4 |a Evolutionary machine learning 
650 4 |a back-propagation 
650 4 |a breast cancer 
650 4 |a computer-aided diagnosis systems 
650 4 |a convolutional neural network 
650 4 |a deep learning 
650 4 |a genetic algorithm 
700 1 |a Thulasiraman, Parimala  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Simulation  |d 1970  |g 97(2021), 8 vom: 10. Aug., Seite 511-527  |w (DE-627)NLM098166832  |x 0037-5497  |7 nnas 
773 1 8 |g volume:97  |g year:2021  |g number:8  |g day:10  |g month:08  |g pages:511-527 
856 4 0 |u http://dx.doi.org/10.1177/0037549721996031  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 97  |j 2021  |e 8  |b 10  |c 08  |h 511-527