Reduced Intrinsic Non-Radiative Losses Allow Room-Temperature Triplet Emission from Purely Organic Emitters

© 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 39 vom: 24. Okt., Seite e2101844
1. Verfasser: Li, Yungui (VerfasserIn)
Weitere Verfasser: Jiang, Lihui, Liu, Wenlan, Xu, Shunqi, Li, Tian-Yi, Fries, Felix, Zeika, Olaf, Zou, Yingping, Ramanan, Charusheela, Lenk, Simone, Scholz, Reinhard, Andrienko, Denis, Feng, Xinliang, Leo, Karl, Reineke, Sebastian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article non-radiative loss phenanthroimidazole room-temperature phosphorescence triplet emission
Beschreibung
Zusammenfassung:© 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Persistent luminescence from triplet excitons in organic molecules is rare, as fast non-radiative deactivation typically dominates over radiative transitions. This work demonstrates that the substitution of a hydrogen atom in a derivative of phenanthroimidazole with an N-phenyl ring can substantially stabilize the excited state. This stabilization converts an organic material without phosphorescence emission into a molecular system exhibiting efficient and ultralong afterglow phosphorescence at room temperature. Results from systematic photophysical investigations, kinetic modeling, excited-state dynamic modeling, and single-crystal structure analysis identify that the long-lived triplets originate from a reduction of intrinsic non-radiative molecular relaxations. Further modification of the N-phenyl ring with halogen atoms affects the afterglow lifetime and quantum yield. As a proof-of-concept, an anticounterfeiting device is demonstrated with a time-dependent Morse code feature for data encryption based on these emitters. A fundamental design principle is outlined to achieve long-lived and emissive triplet states by suppressing intrinsic non-radiative relaxations in the form of molecular vibrations or rotations
Beschreibung:Date Revised 13.10.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202101844