Wireless Power Transmission for Implantable Medical Devices Using Focused Ultrasound and a Miniaturized 1-3 Piezoelectric Composite Receiving Transducer

Wireless power transmission (WPT) using ultrasound is a promising way for wirelessly recharging implantable medical devices (IMDs). However, the transmitted power using ultrasound so far is insufficient for driving the existing IMDs. Moreover, the size of the receiving transducer is larger, which is...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 68(2021), 12 vom: 02. Dez., Seite 3592-3598
1. Verfasser: Yi, Xiyuan (VerfasserIn)
Weitere Verfasser: Zheng, Weicheng, Cao, Hua, Wang, Shenggeng, Feng, Xiaoli, Yang, Zengtao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Wireless power transmission (WPT) using ultrasound is a promising way for wirelessly recharging implantable medical devices (IMDs). However, the transmitted power using ultrasound so far is insufficient for driving the existing IMDs. Moreover, the size of the receiving transducer is larger, which is not suitable for implantation. To increase the output power and reduce the size of the implantable receiver, this article presents a method of combining focused ultrasound with a miniaturized 1-3 piezoelectric composite receiving transducer to produce higher electrical power. An analytical fluid-structure interaction model is constructed to fully understand the operating mechanism of the receiving transducer under ultrasonic force. In our experiments, a miniaturized 1-3 piezoelectric composite receiving transducer with a diameter of 3.7 mm was used. The output power generated from the receiving transducer reached 60 mW at a distance of 150 mm. In vitro and in vivo animal experiments proved that the miniaturized transducer could successfully receive focused ultrasonic energy and convert it to electrical power. The method presented and the electrical power that we obtained can provide a valuable reference for wirelessly charging of IMDs
Beschreibung:Date Completed 13.12.2021
Date Revised 14.12.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1525-8955
DOI:10.1109/TUFFC.2021.3103099