A Sustainable and Flexible Microbrush-Faced Triboelectric Generator for Portable/Wearable Applications

© 2021 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 39 vom: 06. Okt., Seite e2102530
1. Verfasser: Jeong, Jeonghwa (VerfasserIn)
Weitere Verfasser: Jeon, Sangheon, Ma, Xiaoting, Kwon, Young Woo, Shin, Dong-Myeong, Hong, Suck Won
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article bundled microfibers energy harvesting microbrushes sustainable nanogenerators triboelectric nanogenerators
Beschreibung
Zusammenfassung:© 2021 Wiley-VCH GmbH.
Triboelectric nanogenerators (TENGs) are put forward as a state-of-the-art energy-scavenging technology for self-powered electronics, but their severe wear and degradation driven by inevitable friction can pose significant durability and sustainability concerns. Here, an array of microfibers is reported that functions as a robust and sustainable TENG in both in-plane sliding and vertical contact-separation modes, with excellent electrical potential as high as 20 V and a high cyclability of 3000. The design flexibility of this microbrush TENG (MB-TENG) on the counter materials facilitates the further improvement of electrical outputs, benefiting numerous applications of human-interactive triboelectrification. Significantly, these MB-TENGs offer sufficient output power for successfully driving a smartwatch as well as an electromyography module. This technology uses a simple and cost-effective manner to provide a robust and reliable monolithic TENG module, which is expected to serve as a promising energy-harvesting source for self-powered electronics in the near future
Beschreibung:Date Revised 04.10.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202102530